首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscoelastic properties of binary blends of nitrile rubber (NBR) and isotactic polypropylene (PP) of different compositions have been calculated with mean‐field theories developed by Kerner. The phase morphology and geometry have been assumed, and experimental data for the component polymers over a wide temperature range have been used. Hashin's elastic–viscoelastic analogy principle is used in applying Kerner's theory of elastic systems for viscoelastic materials, namely, polymer blends. The two theoretical models used are the discrete particle model (which assumes one component as dispersed inclusions in the matrix of the other) and the polyaggregate model (in which no matrix phase but a cocontinuous structure of the two is postulated). A solution method for the coupled equations of the polyaggregate model, considering Poisson's ratio as a complex parameter, is deduced. The viscoelastic properties are determined in terms of the small‐strain dynamic storage modulus and loss tangent with a Rheovibron DDV viscoelastometer for the blends and the component polymers. Theoretical calculations are compared with the experimental small‐strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions are also compared with the experimental mechanical properties of compatibilized and dynamically cured 70/30 PP/NBR blends. The results computed with the discrete particle model with PP as the matrix compare well with the experimental results for 30/70, 70/30, and 50/50 PP/NBR blends. For 70/30 and 50/50 blends, these predictions are supported by scanning electron microscopy (SEM) investigations. However, for 30/70 blends, the predictions are not in agreement with SEM results, which reveal a cocontinuous blend of the two. Predictions of the discrete particle model are poor with NBR as the matrix for all three volume fractions. A closer agreement of the predicted results for a 70/30 PP/NBR blend and the properties of a 1% maleic anhydride modified PP or 3% phenolic‐modified PP compatibilized 70/30 PP/NBR blend in the lower temperature zone has been observed. This may be explained by improved interfacial adhesion and stable phase morphology. A mixed‐cure dynamically vulcanized system gave a better agreement with the predictions with PP as the matrix than the peroxide, sulfur, and unvulcanized systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1417–1432, 2004  相似文献   

2.
The effects of the blend ratio and initiating system on the viscoelastic properties of nanostructured natural rubber/polystyrene‐based interpenetrating polymer networks (IPNs) were investigated in the temperature range of ?80 to 150 °C. The studies were carried out at different frequencies (100, 50, 10, 1, and 0.1 Hz), and their effects on the damping and storage and loss moduli were analyzed. In all cases, tan δ and the storage and loss moduli showed two distinct transitions corresponding to natural rubber and polystyrene phases, which indicated that the system was not miscible on the molecular level. However, a slight inward shift was observed in the IPNs, with respect to the glass‐transition temperatures (Tg's) of the virgin polymers, showing a certain degree of miscibility or intermixing between the two phases. When the frequency increased from 0.1 to 100 Hz, the Tg values showed a positive shift in all cases. In a comparison of the three initiating systems (dicumyl peroxide, benzoyl peroxide, and azobisisobutyronitrile), the dicumyl peroxide system showed the highest modulus. The morphology of the IPNs was analyzed with transmission electron microscopy. The micrographs indicated that the system was nanostructured. An attempt was made to relate the viscoelastic behavior to the morphology of the IPNs. Various models, such as the series, parallel, Halpin–Tsai, Kerner, Coran, Takayanagi, and Davies models, were used to model the viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by group contribution analysis; this showed that the damping was influenced by the phase morphology, dual‐phase continuity, and crosslinking of the phases. Finally, the homogeneity of the system was further evaluated with Cole–Cole analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1680–1696, 2003  相似文献   

3.
By Friedel‐Crafts alkylation reaction, catalyzed by a Lewis acid of anhydrous aluminum chloride (AlCl3), binary polymer blends of polypropylene (PP)/polystyrene (PS) with volume proportion of 80/20 were in situ compatiblized and prepared in an XSS‐30 melt mixer at 210 °C. The linear viscoelastic characteristics of the blends were investigated by checking the variations of storage modulus, loss modulus, complex modulus, and complex viscosity of the in situ compatiblized blends, which were dependent on AlCl3 content. In addition, Han plots of the in situ compatiblized blends with different AlCl3 content were also used to characterize the linear viscoelastic properties of the blends. The results showed that both the dynamic rheological parameters and the Han plots were obviously influenced by the rheological properties of the matrix and slightly influenced by the rheological properties of the dispersed phase. Further investigations revealed that phase geometry contributions to the dynamic rheological parameters of the blends could be ignored in comparison with the contributions of the components and the interfacial modification, which were defined and obtained according to log‐linear‐additivity rule. The linear viscoelastic characteristics of the blends were mainly controlled by the combination of the effects of interfacial modification between phases and the rheological properties of the matrix. Storage modulus is the most sensitive dynamic rheological parameter to characterize the interfacial compatiblization effects in the in situ compatiblized binary polymer blends with rheological properties of components variable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1349–1362, 2010  相似文献   

4.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

5.
Dynamic mechanical and solid-state 13C nuclear magnetic resonance (NMR) analyses have been used to assess a molecular-scale heterogeneity in a raw elastomer (butadiene-acrylonitrile copolymer elastomer, NBR), a microcrystalline polymer (poly(vinyl chloride), PVC), and their 50/50 blend. The presence of the microcrystalline heterogeneity in PVC and in the blend was characterized by the temperature dependence of the frequency-swept dynamic mechanical behavior. The NMR T relaxation experiments with cross-polarization (CP) and magic-angle spinning (MAS) revealed that (1) NBR contained a substantial fraction (ca. 27%) of a molecular-scale heterogeneity identified as butadiene blocks, (2) the fraction of microcrystallites in PVC was ca. 14%, (3) pure phases of both component polymers were present in the blend, dispersed in the mixed matrix, (4) the upper limit of the heterogeneous domains was estimated to be ca. 2.4 nm, and (5) fractions of heterogeneity tend to increase upon blending, indicating that the solubility of the butadiene block and syndiotactic PVC block decreases in the blend. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 709–716, 1997  相似文献   

6.
The solid‐state viscoelastic properties are examined for intercalated nanocomposites based on a copolyester and (2‐ethyl‐hexyl)dimethyl hydrogenated‐tallow ammonium montmorillonite. The nanocomposites are prepared via the direct melt intercalation technique using a conventional twin‐screw extruder. Dynamic mechanical thermal analysis of the nanocomposites is conducted using two different test setups. The dynamic mechanical relaxation spectra show an increase in the storage modulus of the nanocomposite over the entire temperature range under study as compared to the pristine polymer (except in the transition region from 70 to 80 °C). These results are analyzed using the empirical Havriliak–Negami (HN) equation. The four temperature independent HN parameters (α, β, E0, and E) and one temperature dependent parameter (τ, the relaxation time) are determined by solving the HN equation for each temperature over the range of temperatures. The calculated moduli results fit well with the experimental values of the relaxation spectra for the nanocomposites. This study shows that the HN model can be applied to polymer layered silicate nanocomposites, and it can be used to predict their dynamic mechanical properties over a wide range of temperatures and frequencies a priori. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2657–2666, 2004  相似文献   

7.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

8.
The stretched exponential relaxation modulus of regular and polymer modified asphalts is studied. It is shown that this relaxation function can generate the dynamic functions of these materials very well on any finite interval of the reduced frequencies (master curves). By continuation one can, in principle, cover the whole region of master curves of G′ and G″. The dispersive defect diffusion mechanism, which leads to the stretched exponential law, points to the stronger three-dimensional structure of modified asphalt at low temperatures. The method of calculating G′ and G″ from the stretched exponential relaxation modulus is proposed and tested on one regular and one modified asphalt. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1225–1232, 1997  相似文献   

9.
This study investigated the dynamic mechanical properties of hybrid intraply carbon/E-glass epoxy composites with different orientations and stacking sequences under different loading conditions with increasing temperature. A neat epoxy and five various hybrid composites such as Carbon (0°)/E-glass (90°), Carbon (45°)/E-glass (135°), Carbon (90°)/E-glass (0°), Carbon/E-glass (alternating layer), and Carbon/E-glass (alternating layer 45°) were manufactured. Three-point bending test and dynamic mechanical test were conducted to understand the flexural modulus and viscoelastic behavior (storage modulus, loss modulus, and loss tangent) of the composites. Dynamic mechanical test was performed with the dual cantilever method, at four different frequencies (1, 5, 10, and 20 Hz) and temperatures ranging from 30 to 150°C. The experimental results of storage modulus, loss modulus, and loss tangents were compared with the theoretical findings of neat epoxy and various hybrid composites. The glass transition temperature (Tg) increased with the increase in frequency. A linear fit of the natural log of frequency to the inverse of absolute temperature was plotted in the activation energy estimation. The interphase damping (tanδi) between plies and the strength indicator (Si) of the hybrid composites were estimated. It was observed that the neat epoxy had more insufficient storage and loss modulus and a high loss tangent at all the frequencies whereas hybrid composites had high storage and loss modulus and a low loss tangent for all the frequencies. Compared with other hybrid composites, Carbon (90°)/E-glass (0°) had higher strength and activation energy. The result of reinforcement of hybrid fiber in neat epoxy significantly increases the material's strength and stability at higher temperatures whereas decreasing free molecular movement.  相似文献   

10.
A study on the correlation between electrical percolation and viscoelastic percolation for carbon black (CB) and carbon fiber (CF) filled high‐density polyethylene (HDPE) conductive composites was carried out through an examination of the filler concentration (?) dependence of the volume resistivity (ρ) and dynamic viscoelastic functions. For CB/HDPE composites, when ? was higher than the modulus percolation threshold (?G ~ 15 vol %), the dynamic storage modulus (G′) reached a plateau at low frequencies. The relationship between ρ and the normalized dynamic storage modulus (Gc/Gp, where Gc and Gp are the dynamic storage moduli of the composites and the polymer matrix, respectively) was studied. When ? approached a critical value (?r), a characteristic change in Gc/Gp appeared. The critical value (Gc/Gp)c was 9.80, and the corresponding ?r value was 10 vol %. There also existed a ? dependence of the dynamic loss tangent (tan δ) and a peak in a plot of tan δ versus the frequency when ? approached a loss‐angle percolation (?δ = 9 vol %). With parameter K substituted for A, a modified Kerner–Nielson equation was obtained and used to analyze the formation of the network structure. The viscoelastic percolation for CB/HDPE composites could be verified on the basis of the modified equation, whereas no similar percolation was found for CF/HDPE composites. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1199–1205, 2004  相似文献   

11.
Crosslinking behaviors of acrylonitrile butadiene rubber (NBR)/poly (vinyl chloride) (PVC) alloy, filled with anhydrous copper sulfate (CuSO4) particles, were investigated for the first time by dynamic mechanical analysis (DMA) under hetero and isothermal modes, respectively. In the heterothermal testing, (NBR/PVC)/CuSO4 compound showed two marked increases in the storage modulus (E′), corresponding to coordination crosslinking of NBR-CuSO4 and self-crosslinking of NBR and PVC respectively. During the isothermal testing, a dramatic increase in E′ was found at the initial stage while that of original NBR/PVC alloy was not detected. The marked increase in E′ of (NBR/PVC)/CuSO4 compound was mainly due to the crosslinking induced by coordination between  CN and Cu2+. The increasing extent of E′ increased with the rise of CuSO4 content, suggesting the formation of a greater number of crosslinks. Moreover, the activation energy (Ea) of crosslinking process was about 139 kJ/mol. In this work, fourier transform infrared spectrum (FT-IR) and equilibrium swelling method were also performed for the characterization of the compound. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 41–51, 2007  相似文献   

12.
Cure behaviors of diglycidylether of bisphenol A (DGEBA)/trimethylolpropane triglycidylether (TMP) epoxy blends initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were investigated using DSC and rheometer. This system showed more than one type of reaction and BPH could be excellent thermal latent catalyst without any co‐initiator. The cure activation energy (Ea) obtained from Kissinger method using dynamic DSC data was higher in DGEBA/TMP mixtures than in pure DGEBA. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. The gel time was obtained from the analysis of storage modulus (G′), loss modulus (G″) and damping factor (tanδ). The crosslinking activation energy (Ec) was also determined from the Arrhenius equation based on the gel time and curing temperature. As a result, the crosslinking activation energy showed a similar behavior with that obtained from Kissinger method. And the gel time decreased with increasing TMP content, which could be resulted from increasing the activated sites by trifunctional epoxide groups and decreasing the viscosity of DGEBA/TMP epoxy blend in the presence of TMP. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2114–2123, 2000  相似文献   

13.
The linear viscoelastic behavior of a poly(paraphenylene) with a benzoyl substituent has been examined using tensile, dynamic mechanical, and creep experiments. This amorphous polymer was shown to have a tensile modulus of 1–1.5 Msi, nearly twice that of most common engineering thermoplastics. The relaxation behavior, which is similar to that of common thermoplastics, can be described by the WLF equation. Outstanding creep resistance was observed at low temperatures, with rubbery-like behavior being exhibited as the temperature approached Tg. Physical aging was shown to interact with long-term creep, rendering time–temperature superposition invalid for predicting the long-term properties. The effect of physical aging on the creep behavior was characterized by the shift rate μ. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 70: 2971–2979, 1998  相似文献   

14.
A series of supramolecular soft materials with hydrogen bonded transient networks was prepared by blending carboxy‐terminated telechelic poly(ethyl acrylate) (PEA‐(COOH)2) and polyethyleneimine (PEI). Effects of PEA‐(COOH)2 molecular weight (MPEA) and the blend ratio on the viscoelastic properties were investigated by rheological and small angle X‐ray scattering measurements. Rubbery plateau appeared by adding PEI due to network formation with ionic hydrogen bonded crosslinks between amines on PEI and carboxylic acids on PEA‐(COOH)2. The highest temperature of a storage modulus‐loss modulus crossover as well as the highest flow activation energy was attained at a certain mole ratio of amines to carboxylic acids, irrelevant to MPEA, indicating optimized supramolecular networks were achieved by stoichiometric balance of two functional groups. Since telechelic PEA‐(COOH)2 serves as a network strand, the plateau modulus was inversely proportional to MPEA, which was consistent with the correlation length between crosslinks estimated by X‐ray scattering measurements. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 755–764  相似文献   

15.
In the present article alginate hydrogels and novel hydrogels based on blends of alginate/N‐succinylchitosan have been realized in water solution at neutral conditions. The gels have been obtained by crosslinking via the internal setting method using calcium carbonate (CaCO3) as calcium ions source. A rheological investigation of both the plain alginate and the alginate/N‐succinylchitosan blend hydrogels has been performed by means of oscillatory dynamic measurements. The effect of the inclusion of different amounts of CaCO3 on the critical deformation (γc) characterizing the limit of the linear viscoelastic regime has been studied for the plain alginate gels. The frequency response in small amplitude oscillatory experiments of the plain alginate gels has been investigated in terms of the storage (G′) and loss (G″) modulus behavior. The dynamic data have been interpreted in terms of the Friedrich and Heymann model. The inclusion of the N‐succinylchitosan, in the range 10–50% w/w, had no effect on the γc values. On the contrary, when the 10% w/w of the N‐succinylchitosan is added to the plain alginate gels, a significant increase in the storage modulus values is recorded for all the systems analyzed. The gelation kinetics has been investigated and the results indicate that the kinetics process can be accelerated increasing the percentage of Ca+2 ions and/or including the N‐succinylchitosan in the plain alginate systems. Finally, the morphological analysis of scaffolds obtained from the hydrogels through freeze‐drying revealed an interconnected porous structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1167–1182, 2008  相似文献   

16.
The network formation and viscoelastic behavior of a liquid crystalline monomer, whose structure includes both acrylate and acetylene reactive groups, have been studied. By combining both photo and thermal polymerization, the networks can be formed in two separate steps, with the initial photopolymerization dominated by acrylate crosslinking and subsequent thermal polymerization dominated by acetylene crosslinking. In addition, the monomer exhibits a liquid crystalline phase. Photopolymerization while in the liquid crystal phase locks in the molecular ordering. Dynamic mechanical analysis shows that networks formed from the liquid crystalline phase have lower crosslink densities and narrower distributions of molecular weights between crosslinks when compared to networks formed from the isotropic phase (and at higher polymerization temperatures). After thermal postcure at 250°C, the networks formed from the isotropic monomer have a 23% higher dynamic mechanical storage modulus (in the glassy state) than the networks formed from the liquid crystalline monomer. The thermally postcured networks have unusually high glass‐transition temperatures, which exceed 300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1183–1190, 1999  相似文献   

17.
Polypropylene‐layered silicate nanocomposites consisting of three components—pure polypropylene, maleated polypropylene, and organically modified silicate—were prepared by the melt‐intercalation method to investigate melt‐extensional properties such as melt strength, neck‐in test, and orientation behavior. The nanocomposites showed an enhanced tensile modulus, enhanced storage modulus, much enhanced melt tension, and reduced neck‐in during the melt processing as compared with neat polymer. The uniaxial drawing induced the silicate surface to align parallel to the sheet surface. The c and a* axes of the polypropylene crystals were bimodally oriented to the flow direction, and the b axes were oriented to the thickness direction. The bimodal orientation of the polypropylene crystal was enhanced with the concentration of silicates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 158–167, 2005  相似文献   

18.
A study of the melt‐rheological behavior of thermoplastic elastomers from high‐density polyethylene and acrylonitrile butadiene rubber (NBR) blends was carried out in a capillary rheometer. The effect of the blend ratio and shear rate on the melt viscosity reveals that the viscosity decreases with the shear rate but increases with NBR content. Compatibilization by maleic anhydride modified polyethylene has no significant effect on the blend viscosity, but a finer dispersion of the rubber is obtained, as is evident from scanning electron micrographs. The melt‐elasticity parameters, such as the die swell, principal normal stress difference, recoverable shear strain, and elastic shear modulus of the blends, were also evaluated. The effect of annealing on the morphology of the extrudate reveals that annealing in the extruder barrel results in the coalescence of rubber particles in the case of the incompatible blends, whereas the tendency toward agglomeration is somewhat suppressed in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1104–1122, 2000  相似文献   

19.
Diglycidyl ether of bisphenol A (DGEBA)‐bridged polyorganosiloxane precursors have been prepared successfully by reacting diglycidyl ether of bisphenol A epoxy resin with 3‐aminopropyltriethoxysilane. Acid‐modified and unmodified multiwalled carbon nanotube (MWCNT) were dispersed in the diglycidyl ether of bisphenol A‐bridged polyorganosiloxane precursors and cured to prepare the carbon nanotube/diglycidyl ether of bisphenol A‐bridged polysilsesquioxane (MWCNT/DGEBA‐PSSQ) composites. The molecular motion of MWCNT/DGEBA‐PSSQ nanocomposites was studied by high‐resolution solid‐state 13C NMR. Acid‐modification can improve the affinity between MWCNT and the polymer matrix. The molecular motion of the DGEBA‐PSSQ decreased with acid‐modified MWCNT content. However, when unmodified MWCNT was used, the molecular motion of the DGEBA‐PSSQ was increased. SEM and TEM microphotographs confirm that acid‐modified MWCNT exhibits better dispersion than unmodified MWCNT in DGBEA‐PSSQ. The dynamic mechanical properties of acid‐modified MWCNT/DGBEA‐PSSQ composites are more favorable than those of unmodified MWCNT. Tg of the DGEBA‐PSSQ decreased from 174.0 °C (neat DGEBA‐PSSQ) to 159.0 °C (1 wt % unmodified MWCNT) and 156.0 °C (1 wt % acid‐modified MWCNT). The storage modulus (at 30 °C) of the DGEBA‐PSSQ increased from 1.23 × 109 Pa (neat DGEBA‐PSSQ) to 1.65 × 109 Pa (1 wt % acid‐modified MWCNT). However, when unmodified MWCNT was used, the storage modulus of the DGEBA‐PSSQ decreased to 6.88 × 108 Pa (1 wt % unmodified MWCNT). At high temperature, above 150 °C, storage modulus of nanocomposites was higher than that of neat polymer system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 472–482, 2008  相似文献   

20.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号