首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six different polyesters ( 6a–6c and 7a–7c ) were prepared by the bulk polycondensations of the respective combinations of 1,4:3,6-dianhydro-D-glucitol ( 3 ) and 1,4:3,6-dianhydro-D-mannitol ( 4 ) with succinyl dichloride ( 5a ), glutaryl dichloride ( 5b ), and adipoyl dichloride ( 5c ) at 140–180°C. Polyesters having number average molecular weights up to 2.6 ×104 were obtained in high yields. Only polyester 7a based on 4 and 5a was partially crystalline, whereas all the other polyesters were amorphous. Thin films of these polyesters except that of 7a were spontancously hydrolyzed in a neutral phosphate buffer solution at 50°C, whereas they were reluctant to be hydrolyzed at 27°C. The polyesters were more or less degraded at 27°C by treatment with an activated sludge or by prolonged burial in soil. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Novel copolycarbonates containing 1,4:3,6‐dianhydro‐D ‐glucitol or 1,4:3,6‐dianhydro‐D ‐mannitol units, with various methylene chain lengths, were synthesized by bulk and solution polycondensations, of several combinations of carbonate‐modified sugar derivatives and aliphatic diols. Bulk polycondensations of 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(phenoxycarbonyl)‐D ‐mannitol with four α,ω‐alkanediols having methylene chain lengths of 4, 6, 8, and 10, respectively, at 180 °C afforded the corresponding copolycarbonates with number‐average molecular weight (Mn) values up to 19.2 × 103. 13C NMR analysis disclosed that these polymers had scrambled structures in which the sugar carbonate and aliphatic carbonate moieties were nearly randomly distributed along a polymer chain. However, solution polycondensations between 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐glucitol or 1,4:3,6‐dianhydro‐2,5‐bis‐O‐(p‐nitrophenoxycarbonyl)‐D ‐mannitol, and the α,ω‐alkanediols in sulfolane or dimethyl sulfoxide at 60 °C gave well‐defined copolycarbonates having regular structures consisting of alternating sugar carbonate and aliphatic carbonate moieties with Mn values up to 33.8 × 103. Differential scanning calorimetry demonstrated that all the copolycarbonates were amorphous with glass‐transition temperatures ranging from 1 to 65 °C, which decreased with increasing lengths of the methylene chain of the aliphatic diols. Additionally, all the copolycarbonates were stable up to 310–330 °C as estimated by thermogravimetric analysis. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2312–2321, 2003  相似文献   

3.
Triethylamine‐promoted polycondensations of 5,5′,6,6′‐tetrahydroxy‐3,3, 3′,3′‐tetramethyl spirobisindane (TTSBI) and α,ω‐alkane dicarboxylic acid dichlorides were performed with equimolar feed ratios. Three different procedures were compared. At a TTSBI concentration of 0.05 mol/L, gelation was avoided, and soluble cyclic polyesters having two OH groups per repeat unit were isolated. These polyesters were characterized with 1H NMR spectroscopy, MALDI‐TOF mass spectrometry, and SEC and DSC measurements. All polycondensations with sebacoyl chloride resulted in gelation, regardless of the procedure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1699–1706, 2007  相似文献   

4.
Several polycondensations of ethylene carbonate with succinic anhydride or glutaric anhydride (GA) were conducted in bulk. Low molar mass polyesters were obtained with pyridine‐type catalysts and GA. Analogous polycondensations of trimethylene carbonate (TMC) and GA were successful when quinoline, 4‐(N,N‐dimethylamino)pyridine, or BF3 · OEt2 was used as a catalyst. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed the formation of cyclic oligoesters and polyesters by backbiting degradation. Monomer mixtures containing an excess of TMC yielded copoly(ester carbonate)s with number‐average molecular weights up to 16,000 Da. Analogous copoly(ester carbonate)s were obtained from TMC and 3,3′‐tetramethylene glutaric anhydride. Furthermore, combined polycondensation/ring‐opening polymerization reactions of TMC and GA with L ‐lactide or ?‐caprolactone were studied. All copolymers were characterized by viscosity measurements and by IR, 1H, and 13C NMR spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4357–4367, 2002  相似文献   

5.
At first, theoretical aspects of “a2+b4” polycondensations (meaning polycondensations of difunctional and tetrafunctional monomers) are discussed and compared with what is known about “a2+b3” polycondensations. The following review of experimental results is subdivided into three sections. First, syntheses of hyperbranched polyethers and polyesters by polycondensations based on equimolar feed ratios will be reported. Second, kinetically controlled (i.e., irreversible) syntheses of multicyclic polymers using equifunctional feed ratios (i.e., a2/b4 ratios of 2:1) will be described. In the third section, syntheses of multicyclic polymers via thermodynamically controlled (reversible) “a2+b4” polycondensations will be discussed. Characteristic for these polycondensations are again equifunctional feed ratios and metal alkoxides as “a2” or “b4” monomers, which catalyze rapid equilibration reactions. Finally, potential applications of the new polymers will shortly be mentioned. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1971–1987, 2009  相似文献   

6.
New phthalide-containing bisphenols, phenolphthalein-N-(3-methylanilide) (3-PMA), and phenolphthalein-N-(4-methylanilide) (4-PMA), were synthesized from phenolphthalein and m- and p-toluidines. These bisphenols were polycondensed with terephthaloyl chloride (TPC) using an interfacial or solution polymerization technique to yield new polyesters. Copolymers were also obtained by utilizing different molar proportion of phenolphthalein (PPH) and 3-PMA or 4-PMA with TPC. The polymers prepared by solution polymerization were obtained in 93–99% yields and showed reduced viscosities in the range 0.37–0.83 dL/g. They were readily soluble in chlorinated hydrocarbons and aprotic polar solvents. The polyesters showed glass transition temperatures in the range 261–300°C as measured by DSC. Thermogravimetric analysis of the polyesters indicated no weight loss below 408°C under N2 atmosphere. Structure–property correlations among these cardo polyesters have been discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3227–3234, 1997  相似文献   

7.
A series of polyesters with π‐conjugated donor–acceptor segments was synthesized by the condensation of azobenzene‐4,4′‐dicarbonylchloride with 1,4:3,6‐dianhydro‐D‐sorbitol ([α] = + 42.5°) and biphenolic chromophores, bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylmethane and bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylsulfone. The polymers were characterized by spectral methods (IR, ultraviolet–visible, and NMR), thermal methods (thermogravimetry and differential scanning calorimetry), wide‐angle X‐ray scattering, and polarimetry. The polymers containing isosorbide units were optically active and crystalline. They exhibited glass‐transition temperature values between 100 and 160 °C and were stable up to 400 °C. The second‐harmonic generation (SHG) efficiency of the polymers was experimentally verified by a powder‐reflection technique with 2‐methyl‐4‐nitroaniline as a reference. The SHG efficiencies of the polymers were compared to those of the chromophores and explained as a function of the percentage of chiral composition. The hyperpolarizability β values were also determined by a two‐level model solvatochromic method and computational methods. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2868–2877, 2002  相似文献   

8.
Poly(2-(2′-ethylhexylthio)-5-methoxy-1,4-phenylenevinylene) (PMEHTPV) was synthesized in thin films via a water-soluble precursor polymer and characterized with thermogravimetric analysis (TGA), FT–IR, and elemental analysis, etc. The PMEHTPV film could be stretched up to 10 times and showed conductivity of 0.13 Scm−1 when doped with FeCl3. The 2-ethylhexylthio group resulted in blue-shifted absorption and emission compared to those of poly(2-2′-ethylhexyloxy-5-methoxy-1,4-phenylenevinylene) (MEH-PPV). The relative quantum efficiency of the device made by PMEHTPV was 20 times higher than that of MEH-PPV. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2253–2258, 1997  相似文献   

9.
Novel polycarbonates, with pendant functional groups, based on 1,4:3,6‐dianhydrohexitols and L ‐tartaric acid derivatives were synthesized. Solution polycondensations of 1,4:3,6‐dianhydro‐bis‐O‐(p‐nitrophenoxycarbonyl)hexitols and 2,3‐di‐O‐methyl‐L ‐threitol or 2,3‐O‐isopropylidene‐L ‐threitol afforded polycarbonates having pendant methoxy or isopropylidene groups, respectively, with number average molecular weight (Mn) values up to 3.61 × 104. Subsequent acid‐catalyzed deprotection of isopropylidene groups gave well‐defined polycarbonates having pendant hydroxyl groups regularly distributed along the polymer chain. Differential scanning calorimetry (DSC) demonstrated that all the polycarbonates were amorphous with glass transition temperatures ranging from 57 to 98 °C. Degradability of the polycarbonates was assessed by hydrolysis test in phosphate buffer solution at 37 °C and by biochemical oxygen demand (BOD) measurements in an activated sludge at 25 °C. In both tests, the polycarbonates with pendant hydroxyl groups were degraded much faster than the polycarbonates with pendant methoxy and isopropylidene groups. It is noteworthy that degradation of the polycarbonates with pendant hydroxyl groups was remarkably fast. They were completely degraded within only 150 min in a phosphate buffer solution and their BOD‐biodegradability reached nearly 70% in an activated sludge after 28 days. The degradation behavior of the polycarbonates is discussed in terms of their chemical and physical properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3909–3919, 2005  相似文献   

10.
Aiming to develop soluble and colorless polyimides, two novel diamines, 2,5‐bis(2‐trifluoromethyl‐4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2a) and 2,5‐bis(2‐methyl‐4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2b), were designed and synthesized by the reduction of corresponding dinitro monomer which was obtained via solvent‐free melt heating method. Polyimides (PI–(1–5)) containing 1,4:3,6‐dianhydro‐d ‐glucidol fragments were prepared from 2a and five kinds of common dianhydrides and PI–6 was synthesized from 2b and 4,4′‐(hexafluoroisopropylidene)‐diphthalic anhydride (6FDA) via a two‐step thermal imidization. All the polyimides were readily soluble in common polar solvents and could afford flexible, tough, and transparent films with transparency as high as 87% at 450 nm. Meanwhile, PI–(1–6) exhibited unexpectedly low dielectric constants of 2.02–2.52 at 1 MHz. In addition, analogs PI–7 derived from 2,5‐bis(4‐amino‐phenoxy)‐1,4:3,6‐dianhydrosorbitol (2c) and 6FDA and PI–8 derived from 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl (2d) and 6FDA were also obtained via a two‐step thermal imidization for comparision with PI–(1–6) on aspects of thermal, mechnical, optical, electrical, and morphological properties. The structure–property relationships of PI–(1–8) were discussed in detail. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3253–3265  相似文献   

11.
In this article, we describe the one‐step synthesis of polyesters having pendent hydroxyl groups by Lewis acid‐catalyzed, regioselective, dehydration polycondensations of diols (glycerol and sorbitol) and dicarboxylic acids [tartaric acid (TA) and malic acid (MA)] containing pendent hydroxyl groups, using low temperature polycondensation technique. Direct polycondensations of TA or MA and 1,9‐nonanediol catalyzed by scandium trifluoromethanesulfonate [Sc(OTf)3] successfully yielded linear polyesters having hydroxyl functionality (Mn = ca. 1.0 × 104). To demonstrate the reactivity of the pendent hydroxyl group, a glycosidation was performed. Poly(nonamethylene L ‐malate) showed significant higher biodegradability, compared with poly(nonamethylene L ‐tartrate) or poly(nonamethylene succinate). Stable poly(nonamethylene L ‐tartrate) emulsion could be prepared using poly(vinyl alcohol) as the surfactant, although emulsions consisting of poly(nonamethylene succinate) were unstable and phase‐separated within a few days. Furthermore, direct polycondensations of TA and diethylene glycol (DEG) or triethylene glycol (TEG) successfully produced water‐soluble polyesters having hydroxyl groups. This new polycondensation system may be extremely effective not only for advanced material design using functional monomers but also for effective utilization of biomass resources as chemical substances. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5747–5759, 2009  相似文献   

12.
Click Cu(I)‐catalyzed polymerizations of diynes that contained ester linkages and diazides were performed to produce polyesters (click polyesters) of large molecular weights [(~1.0–7.0 ) × 104], that contained main‐chain 1,4‐disubstitued triazoles in excellent yields. Incorporation of triazole improved the thermal properties and magnified the even‐odd effect of the methylene chain length. We also found that, by changing the positions of the triazole rings, the thermal properties of the polyesters could be controlled. The use of in situ azidation was a safe reaction, as explosive diazides are not used. In addition, the microwave heating was found to accelerate the polymerization rates. This is the first study that has applied click chemistry for the synthesis of a series of polyesters. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4207–4218, 2010  相似文献   

13.
We prepared 2,2‐dibutyl‐2‐stanna‐1,3‐dithiacycloalkanes from dibutyltin oxide and α,ω‐dimercaptoalkanes. Heterocycles with five‐, six‐, seven‐, or nine‐ring members were used as bifunctional monomers for polycondensations with aliphatic dicarboxylic acid chlorides. These polycondensations conducted in bulk were highly exothermic and yielded poly(thio ester)s with number average molecular weights (Mn's) in the range of 5000–30,000 Da. These poly(thio ester)s proved to be rapidly crystallizing materials with melting temperatures in the range of 90–150 °C. In addition to the success of the new synthetic approach, two interesting and unpredictable results were obtained. All volatile species detectable by matrix assisted laser desorption induced‐time of flight (MALDI‐TOF) mass spectrometry were cyclic oligo‐ and poly(thio ester)s. Second, several polyesters showed a reversible first‐order change of the crystal modification as identified by differential scanning calorimetry measurements and X‐ray scattering with variation of the temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3656–3664, 2000  相似文献   

14.
The effect of monomer structure and catalyst on the synthesis of hyperbranched polyesters based on 4,4-(4′-hydroxyphenyl)pentanoic acid has been examined. The nature of the ester group and the catalyst have a significant effect on the molecular weight of the hyperbranched polyester but do not effect the degree of branching for these materials. The fate of the single ester group at the focal point of these hyperbranched macromolecules is probed by the synthesis and polymerization of 13C labeled methyl 4,4-(4′-hydroxyphenyl)pentanoate. Comparison of the molecular weights determined by 1H- or 13C-NMR spectra with those determined by osmometry suggest that intramolecular cyclization does not occur to a significant extent in these systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1627–1633, 1997  相似文献   

15.
Three series of terephthalate polyesters (copolyesters and terpolyesters) containing 70, 80, and 90 mol % of ethylene glycol respectively, 1,4‐cyclohexanedimethanol (CHDM) and isosorbide in varying ratios, were synthesized by melt polycondensation. It was found that only ~75 mol % of the feeding isosorbide was incorporated in the resulting polyesters and that their content in diethylene glycol oscillated between 2 and 4 mol %. The polyesters had weight‐average molecular weights in the 25,000–33,000 g mol?1 range and polydispersities between 2 and 2.5. The combined 1H and 13C NMR analysis revealed that the microstructure of all these polyesters was at random. They showed good thermal stability with decomposition temperatures above 400 °C. Their glass‐transition temperatures were observed to increase with the content in cyclic diols, this effect being more pronounced when isosorbide was the replacing comonomer. Only the series containing 90 mol % of ethylene terephthalate units was able to crystallize upon cooling from the melt. Compared isothermal crystallizations revealed that isosorbide was more effective than CHDM in repressing the crystallizability of PET. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Telechelic oligo(ether–ketone)s containing two trimethylsiloxy end groups and one methyl group per repeating unit were prepared by polycondensation of 4-fluoro-2′-methyl-4′-(trimethylsiloxy)benzophenone. The telechelic character was achieved by cocondensation of a small amount of silylated bisphenol-P. The end groups of the silylated oligo(ether–ketone)s were acetylated by means of acetyl chloride. On the basis of 1H-NMR end group analyses two samples of α,ω-bis(acetoxy) oligo(ether–ketone)s with DP = 14 and DP ∼ 28 were obtained. These oligo(ether-ketone)s and a 70 or 140 fold molar amount of silylated 3,5-bis(acetoxy)benzoic acid were polycondensed at 270°C in bulk. The resulting A–B–A triblock copolymers were fractionated by dissolution in tetrahydrofuran. In three out of four experiments a small fraction of precipitated material rich in oligo(ether–ketone) was isolated. The purified triblock copolymers were characterized by inherent viscosities and NMR spectra. For those samples containing the long oligo(ether–ketone) block a low degree of crystallinity was observed after annealing. Four additional polycondensations were conducted with an initial reaction temperature of 290°C. In this way a completely soluble and amorphous triblock copolymer was obtained. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 31–38, 1998  相似文献   

17.
Two series of new linear polyesters containing sulfur in the main chain were obtained by melt polycondensation of naphthalene-1,4-bis(methylthioacetic acid) (N-1,4-BMTAA) or naphthalene-1,5-bis(methylthioacetic acid) (N-1,5-BMTAA) with some aliphatic diols using a 0.05 molar excess of diol. Softening temperatures ranging from 55 to 130°C, reduced viscosities in the range of 0.15–0.39 dL/g, and low-molecular weights were their characteristic. The structure and thermal properties of all polyesters were examined by using elemental analysis, FT-IR and 1H-NMR spectroscopy, X-ray diffraction analysis, differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorymetry (DSC). The kinetics of polyester formation by uncatalyzed melt polycondensation was studied in a model system: N-1,4-BMTAA or N-1,5-BMTAA and 2,2′-oxydiethanol (ODE) at 150, 160, and 170°C. Reaction rate constants (k3) and activation parameters (ΔG, ΔH, ΔS) from carboxyl group loss were determined using classical kinetic methods. Hydroxyl-terminated polyesters derived from 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were used for preparation of the polyurethanes by melt polyaddition with hexamethylene diisocyanate (HDI). They were characterized by reduced viscosity, FT-IR spectroscopy, X-ray diffraction analysis, TGA, DSC, polarizing microscope observation, and hardness and tensile properties. The resulting polyurethanes behave like high-elasticity thermoplastic elastomers, except the one derived from N-1,5-BMTAA and 1,6-hexanediol-based polyester. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2359–2369, 1998  相似文献   

18.
This article reports the synthesis, one‐ and two‐photon absorption, and excited fluorescence properties of poly(1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole‐alt‐N‐octyl‐3,6‐carbazole/2,7‐fluorene) ( PDCZ / PDFL ). PDCZ and PDFL are synthesized by the Suzuki cross‐coupling of 2,5‐dioctyl‐1,4‐diketo‐3,6‐bis(p‐bromophenylpyrrolo[3,4‐c]pyrrole and N‐octyl‐3,6‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)carbazole or 2,7‐bis(3,3‐dimethyl‐1,3,2‐dioxaborolan‐2‐yl)fluorene and have number‐average molecular weights of 8.5 × 103 and 1.14 × 104 g/mol and polydispersities of 2.06 and 1.83, respectively. They are highly soluble in common organic solvents and emit strong orange one‐ and two‐photon excited fluorescence (2PEF) in THF solution and exhibit high light and heat stability. The maximal two‐photon absorption cross‐sections (δ) measured in THF solution by the 2PEF method using femtosecond laser pulses are 970 and 900 GM per repeating unit for PDCZ and PDFL , respectively. These 1,4‐diketo‐pyrrolo[3,4‐c]pyrrole‐containing polymers with full aromatic structure and large δ will be promising high‐performance 2PA dyes applicable in two‐photon science and technology. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 944–951  相似文献   

19.
A series of phosphorous-containing aliphatic polyesters were synthesized by high-temperature solution condensation of 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene (III) with various aromatic acid chlorides in o-dichlorobenzene. All polyesters are amorphous and readily soluble in many organic solvents such as DMAc, NMP, DMSO, and o-dichlorobenzene at room temperature or upon heating. These polyesters are thermally quite stable. The glass transition temperatures of these aliphatic polyesters ranged from 126.6 to 162.2°C. The degradation temperatures (Td onset) in nitrogen ranged from 424 to 448°C, and the char yields at 700°C are 20–32%. The activation energies of degradation ranged from 160.9 to 226.0 kJ/mol. The LOIs of these polyesters ranged from 36 to 43. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3051–3061, 1998  相似文献   

20.
Dicyanotetrafluorobenzene was polycondensed with bisphenol‐P, bisphenol‐M, or 1,4‐bis(4‐hydroxyphenoxy)butane in DMF. Either K2CO3 and ethyldiisopropylamine (EDPA) or tetramethyl piperidine (TMPD) was used as catalysts and HF acceptors. Regardless of base and concentration, all polycondensations of bisphenol‐P or 1,4‐bis(4‐hydroxyphenoxy)butane yielded more or less crosslinked polyethers. In the case of bisphenol‐M, all polycondensations conducted with K2CO3 and 0.4, 0.2, or 0.1 M monomer concentrations resulted again in gelation. Gels were also obtained when polycondensations of 0.4 M monomer solutions were catalyzed with EDPA or TMPD. Yet, at a concentration of 0.2 M, the amines yielded completely soluble polyethers, which were characterized by elemental analyses, inherent viscosities, MALDI‐TOF mass spectrometry, and DSC measurements. The mass spectra revealed that the soluble polyethers mainly consisted of cycles containing two C? F bonds per repeat unit. Nearly quantitative substitution of the C? F groups with 4‐chlorothiophenol, 4‐bromophenol, 4‐aminophenol, and 4‐phenyl azophenol proved successful, so that a broad variety of multifunctional polyethers was obtained, but in the case of 4‐chloro thiophenol cleavage of the polyether chain also occurred. © 2007 Wiley Periodicals, Inc. JPolym Sci Part A: Polym Chem 46: 543–551, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号