首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New hybrid vinyl monomers with both cationic- and radical-polymerizable vinyl groups were synthesized by the reaction of bis[1(chloromethyl)-2-(vinyloxy)ethyl]terephthalate ( 3 ) with unsaturated carboxylic acids using 1,8-diazabicyclo[5.4.0]-undecene-7 (DBU) as a base. The reaction of 3 with methacrylic acid 4a was carried out using DBU in DMSO at 70°C for 24 h to give an 86% yield of the hybrid vinyl monomer ( 5a ). Polycondensation of 3 with unsaturated dicarboxylic acids was also performed using DBU to give hybrid vinyl oligomers with radical polymerizable C (DOUBLE BOND) C groups (VR) in the main chain and cationic polymerizable vinyl ether moieties (VC) on the side chain. The photopolymerization of these hybrid vinyl compounds proceeded smoothly in bulk using either a cationic photoinitiator such as a sulfonium salt or a radical photoinitiator such as acyl phosphine oxide under UV irradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
New photoreactive p-methylcalix[6]arene (MCA) derivatives containing cationically polymerizable groups such as propargyl ether (calixarene 1), allyl ether (calixarene 2), and ethoxy vinyl ether (calixarene 3) groups were synthesized with 80, 74, and 84% yields by the substitution reaction of MCA with propargyl bromide, allyl bromide, and 2-chloroethyl vinyl ether (CEVE), respectively, in the presence of either potassium hydroxide or sodium hydride by using tetrabutylammonium bromide (TBAB) as a phase transfer catalyst (PTC). The p-tert-butylcalix[8]arene (BCA) derivative containing ethoxy vinyl ether groups (calixarene 4) was also synthesized in 83% yield by the substitution reaction of BCA with CEVE by using sodium hydride as a base and TBAB as a PTC. The MCA derivative containing 1-propenyl ether groups (calixarene 5) was synthesized in 80% yield by the isomerization of calixarene 2, which contained allyl ether groups, by using potassium tert-buthoxide as a catalyst. The photochemical reactions of carixarene 1, 3, 4, 5, and 6 were examined with certain photoacid generators in the film state. In this reaction system, calixarene 3 containing ethoxy vinyl ether groups showed the highest photochemical reactivity when bis-[4-(diphenylsulfonio)phenyl]sulfide bis(hexafluorophosphate) (DPSP) was used as the catalyst. On the other hand, calixarene 1 containing propargyl ether groups had the highest photochemical reactivity when 4-morpholino-2,5-dibuthoxybenzenediazonium hexafluorophosphate (MDBZ) was used as the catalyst. It was also found that the prepared carixarene derivatives containing cationically polymerizable groups such as propargyl, allyl, vinyl, and also 1-propenyl ethers have good thermal stability. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1805–1814, 1999  相似文献   

3.
Divinyl ether monomers containing phosphorous residues were synthesized by the addition reaction of glycidyl vinyl ether (GVE) with various phosphonic dichlorides or dichlorophosphates with quaternary onium salts as catalysts. The reaction of GVE with phenylphosphonic dichloride gave bis[1‐(chloromethyl)‐2‐(vinyloxy)ethyl]phenylphosphonate ( 1a ) in a 77% yield. The polycondensation of 1a with terephthalic acid was also carried out with 1,8‐diazabicyclo[5.4.0]undecene‐7 (DBU) as a condensing agent to afford the corresponding phosphorus‐containing polyester. A multifunctional monomer containing both vinyl ether groups and methacrylate groups was prepared by the reaction of 1a with methacrylic acid with DBU. The photoinitiated cationic polymerization of these vinyl ether compounds proceeded rapidly with bis[4‐(diphenylsulfonio)phenyl]sulfide‐bishexafluorophosphate as the cationic photoinitiator without a solvent upon ultraviolet irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2031–2042, 2004  相似文献   

4.
Phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were prepared by the regioselective addition reaction of glycidyl vinyl ether (GVE) or 1‐propenyl glycidyl ether with diaryl phosphonates with quaternary onium salts as catalysts. The reaction of GVE with bis(4‐chlorophenyl) phenylphosphonate gave bis[1‐(4‐chlorophenoxy methyl)‐2‐(vinyloxy)ethyl]phenylphosphonate in a 68% yield. The structures of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were confirmed by IR and 1H NMR spectra and elemental analysis. Photoinitiated cationic polymerizations of the resulting phosphorus‐containing vinyl ether monomers and 1‐propenyl ether monomers were investigated with photoacid generators. The polymerization of vinyl ether groups and 1‐propenyl ether groups of the obtained monomers proceeded very smoothly with a sulfonium‐type cationic photoinitiator, bis[4‐(diphenylsulfonio)phenyl]sulfide‐bis(hexafluorophosphate), upon UV irradiation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3105–3115, 2005  相似文献   

5.
(2-Oxo-1,3-dioxolan-4-yl) methyl vinyl ether (OVE) was synthesized with high yield by addition reaction of glycidyl vinyl ether with carbon dioxide using tetrabutylammonium bromide (TBAB) as a catalyst. OVE was also prepared by reaction with β-butyrolactone or sodium hydrogencarbonate in the presence of TBAB as the catalyst. Poly [(2-oxo-1,3-dioxolan-4-yl) methyl vinyl ether] [P(OVE)] was obtained with high yield by cationic polymerization of OVE catalyzed using boron trifluoride diethyl ether complex in dichloromethane. Polymers bearing pendant 5-membered cyclic carbonate groups were also prepared by radical copolymerization of OVE with some electron-accepting monomers. Furthermore, addition reaction of P(OVE) with alkyl amines yielded the corresponding polymer having pendant 2-hydroxyethyl carbamate residue with high conversions. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

7.
Butyl vinyl ether (BVE) and methyl methacrylate (MMA) mixtures were polymerized by using free radical initiators in conjunction with a cationic initiator such as diphenyl iodonium salt. Polymerization mechanism involves free radical polymerization of MMA which is switched to cationic polymerization of BVE by addition of growing poly(MMA) radicals to BVE and subsequent oxidation of electron donating polymeric radicals to the corresponding cations by iodonium ions. Two representative bifunctional monomers, ethylene glycol divinyl ether (EGDVE) and ethylene glycol dimethacrylate (EGDMA) were also used together with MMA and BVE, respectively, in photo and thermal crosslinking polymerizations. Vinyl ether and methacrylate type monomers can successfully be copolymerized by this double-mode polymerization under photochemical conditions.  相似文献   

8.
Several 1‐butenyl and 1‐pentenyl ether monomers were prepared by the ruthenium catalyzed multistage double bond isomerization of the corresponding 3‐butenyl and 4‐pentenyl ethers and characterized. Employing tris(triphenylphosphine)ruthenium(II) dichloride as a catalyst, the isomerization of octyl 4‐pentenyl ether to octyl 1‐pentenyl ether in 60% yield could be achieved in 110 min at 200–205°C. Under similar conditions, 3‐butenyl octyl ether was isomerized to 1‐butenyl octyl ether in greater than 99% yield. The reactivities of both types of monomers in photoinitiated cationic polymerization were determined using real‐time infrared spectroscopy and the monomers were found to polymerize at very nearly the same rate in the presence of a diaryliodonium salt photoinitiator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 199–209, 1999  相似文献   

9.
Starting with nopol [(R)‐(−)‐2‐(2′‐hydroxyethyl)‐6,6‐dimethyl‐8‐oxatricyclo[3.1.1.12,3]octane, I] as a substrate, two new, interesting monomers, allyl nopol ether epoxide III and nopol 1‐propenyl ether epoxide IV, were prepared. The photoinitiated cationic polymerizations of these two monomers as well as several other model compounds were studied using real‐time infrared spectroscopy. Surprisingly, the rates of epoxide ring‐opening polymerization of both monomers were enhanced as compared to those of the model compounds. Two different mechanisms which involve the free radical induced decomposition of the diaryliodonium salt photoinitiator were proposed to explain the rate acceleration effects. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1199–1209, 1999  相似文献   

10.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

11.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

12.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

13.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Several new epoxide monomers based on dicyclopentadiene (DCPD) were prepared using straightforward reaction chemistry. Those monomer-bearing groups in addition to the epoxy moiety, which can stabilize free radicals, display a pronounced acceleration of the rate of cationic ring-opening polymerization in the presence of diaryliodonium salt photoinitiators. Mechanistic studies conducted with the aid of model compounds have shown that the apparent rate acceleration is due to the free radical chain-induced decomposition of the photoinitiator. One of the chain carriers in this reaction involves a monomer-derived free radical. Also prepared was dicyclopentadiene monomer (V) bearing polymerizable epoxide and 1-propenyl ether groups in the same molecule. The functional groups in V appear to undergo independent vinyl and epoxide ring-opening polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3427–3440, 1999  相似文献   

15.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

16.
Cationic polymerization of 2,2-bis{4-[(2-vinyloxy)ethoxy]phenyl}propane [CH2CH O CH2CH2O C6H4 C(CH3)2 C6H4 OCH2CH2 O CHCH2; 2], a divinyl ether with oxyethylene units adjacent to the polymerizable vinyl ether groups and a bulky central spacer, was investigated in CH2Cl2 at 0°C with the diphenyl phosphate [(C6H5O)2P(O)OH]/zinc chloride (ZnCl2) initiating system. The polymerization proceeded quantitatively and gave soluble polymers up to 85% monomer conversion. In the same fashion as the polymerization of 1,4-bis[2-vinyloxy(ethoxy)]benzene (CH2CH O CH2CH2O C6H4 OCH2CH2 O CHCH2; 1) that we already studied, the content of the unreacted pendant vinyl ether groups of the produced soluble polymers decreased with monomer conversion, and almost all the pendant vinyl ether groups were consumed in the soluble products prior to gelation. Alternatively, endo-type double bonds were gradually formed in the polymer main chains by chain transfer reactions and other side reactions as the polymerization proceeded. The polymerization behavior of isobutyl vinyl ether (3), a monofunctional vinyl ether, under the same conditions, showed that the endo-type olefins in the polymer backbones are of no polymerization ability with the growing active species involved in the present polymerization systems. These results indicate that the intermolecular crosslinking reactions occurred primarily by the pendant vinyl ether groups, and the final stage of crosslinking process leading to gelation also may occur by the small amount of the residual pendant vinyl ether groups (supposedly less than 2%). The formation of the soluble polymers that almost lack the unreacted pendant vinyl ether groups is most likely due to the frequent occurrence of intramolecular crosslinking reactions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1931–1941, 1999  相似文献   

17.
To report a new polymerization reaction phenomenon, this article examines the polymerization of butyl vinyl ether and N‐vinylcarbazole in the presence of 2‐benzoxypentafluoropropene [CF2?C(CF3)OCOC6H5 or BPFP]. The homopolymer of butyl vinyl ether was produced in the presence of a catalytic amount of BPFP in high yields. N‐Vinylcarbazole, which is a monomer well‐known for producing its homopolymer under cationic polymerization conditions, also yielded its homopolymer in the presence of BPFP. It was concluded that some cationic species would be yielded by the addition of BPFP. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 908–910, 2007.  相似文献   

18.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

19.
1-Butenyl glycidyl ether was prepared in high yield by the ruthenium-catalyzed isomerization of crotyl glycidyl ether. This ambifunctional monomer underwent facile photoinitiated cationic polymerization using diaryliodonium salts as photoinitiators. The progress of the polymerizations was followed using Fourier transform real-time infrared spectroscopy, and the reactivity of this monomer under various experimental conditions determined. A comparison of the rates of polymerization of the epoxy and vinyl ether groups suggested that the polymerization may take place by an intramolecular cyclization process that generates cyclic acetal units in the backbone of the polymer. It was further shown that crotyl glycidyl ether undergoes regioselective cationic ring-opening polymerization to give a polyether, and then isomerization was carried out to give an oligomer bearing reactive pendant 1-butenyl ether groups. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1179–1187, 1998  相似文献   

20.
In the presence of silanes bearing Si H groups, dicobalt octacarbonyl [Co2(CO)8] efficiently catalyzes the cationic polymerization of a wide variety of enol ether and other related monomers including vinyl ethers, 1-propenyl ethers, 1-butenyl ethers, 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, ketene acetals, and allene ethers. In addition, this catalyst system is also effective for the polymerization of complimentary allylic and propargylic ethers by a process involving tandem isomerization and cationic polymerization. This latter process occurs by a stepwise mechanism in which the allylic or propargylic ether is first isomerized, respectively, to the corresponding enol ether or allenic ether and then this latter compound is rapidly cationically polymerized in the presence of the catalyst. In accord with this mechanism, it has been shown that the structure of the polymers prepared from related enol and allyl ethers using the above catalyst system are identical. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1579–1591, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号