首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interdiffusion and miscibility behavior of three different types of modified poly(arylether sulfone)s with deuterated poly(arylether sulfone) is studied by depth profiling using the nuclear reaction D(3He, α)p. The diffusion coefficients are found to be in the range of 10−15 and 10−14 cm2/s at 195°C. A random copolymer of poly(arylether sulfone) containing 4,4-bis-(4′-hydroxyphenyl)valeric acid units is only partially miscible with deuterated poly(arylether sulfone) when the comonomer content is 8.8 mol %, whereas blends with comonomer contents of 1.7 and 4.5 mol % are miscible as indicated by complete interdiffusion. The transition from miscibility to immiscibility is caused by repulsive interactions of copolymer segments and can be explained in terms of a mean-field theory of random copolymer blends. Also, poly(arylether sulfone)s grafted with 0.4 wt % maleic anhydride or having pyromellitic anhydride endgroups are miscible with deuterated poly(arylether sulfone)s. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2083–2091, 1997  相似文献   

2.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

3.
This paper discusses the poly(ethylene-co-p-methylstyrene) copolymers prepared by metallocene catalysts, such as Et(Ind)2ZrCl2 and [C5Me4(SiMe2NtBu)]-TiCl2, with constrained ligand geometry. The copolymerization reaction was examined by comonomer reactivity (reactivity ratio and comonomer conversion versus time), copolymer microstructure (DSC and 13C-NMR analyses) and the comparisons between p-methylstyrene and other styrene-derivatives (styrene, o-methylstyrene and m-methylstyrene). The combined experimental results clearly show that p-methylstyrene performs distinctively better than styrene and its derivatives, due to the cationic coordination mechanism and spatially opened catalytic site in metallocene catalysts with constrained ligand geometry. A broad composition range of random poly(ethylene-co-p-methylstyrene)copolymers were prepared with narrow molecular weight and composition distributions. With the increase of p-methylstyrene concentration, poly(ethylene-co-p-ethylstyrene)copolymer shows systematical decrease of melting point and crystallinity and increase of glass transition temperature. At above 10 mol % of p-methylstyrene, the crystallinity of copolymer almost completely disappears. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1017–1029, 1998  相似文献   

4.
Butadiene‐isoprene copolymerization with the system V(acac)3‐MAO was examined. Crystalline or amorphous copolymers were obtained depending on isoprene content. Both butadiene and isoprene units exhibit a trans‐1,4 structure and are statistically distributed along the polymer chain. Polymer microstructure, comonomer composition, and distribution along the polymer chain were determined by 13C and 1H NMR analysis. The thermal and X‐ray behaviors of the copolymers were also investigated and compared with results from solid‐state 13C NMR experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4635–4646, 2007  相似文献   

5.
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009  相似文献   

6.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐tBu‐2‐OC6H3CH?N(C6F5)] [PhN?C(CF3)CHCRO]TiCl2 [ 3a : R = Ph, 3b : R = C6H4Cl(p), 3c : R = C6H4OMe(p), 3d : R = C6H4Me(p), 3e : R = C6H4Me(o)] were synthesized and characterized. Molecular structures of 3b and 3c were further confirmed by X‐ray crystallographic analyses. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts displayed favorable ability to incorporate 5‐vinyl‐2‐norbornene (VNB) and 5‐ethylidene‐2‐norbornene (ENB) into the polymer chains, affording high‐molecular weight copolymers with high‐comonomer incorporations and alternating sequence under the mild conditions. The comonomer concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resultant copolymer. At initial comonomer concentration of higher than 0.4 mol/L, the titanium complexes with electron‐donating groups in the β‐enaminoketonato moiety mediated room‐temperature living ethylene/VNB or ENB copolymerizations. Polymerization results coupled with density functional theory calculations suggested that the highly controlled living copolymerization is probably a consequence of the difficulty in chain transfer of VNB (or ENB)‐last‐inserted species and some characteristics of living ethylene polymerization under limited conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Copolymers of vinyl acetate and methacrylonitrile were prepared by free‐radical polymerization in the presence of the chain‐transfer agent (CTA) ethyl‐α‐ (t‐butanethiomethyl)acrylate. Molecular weight measurements showed that the chain‐transfer constants increased with the vinyl acetate content of the comonomer mixture, ranging from 0.42 for methacrylonitrile to 6.3 for the copolymerization of a vinyl acetate‐rich monomer mix (89/11). The bulk copolymer composition was not appreciably affected by the amount of CTA used in the copolymerization. The efficiency of the addition–fragmentation mechanism in producing specifically end‐functionalized copolymers was investigated with 1H NMR spectroscopy. Spectral peaks consistent with all the expected end groups were observed for all comonomer feeds. Peaks consistent with other end groups were also observed, and these were particularly prominent for copolymers made with lower CTA concentrations. At the highest concentrations used, quantitative measurements of end‐group concentrations indicated that 70–80% of the end groups were those expected on the basis of the addition–fragmentation chain‐transfer mechanism. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2911–2919, 2001  相似文献   

8.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

9.
Highly branched perfluorinated aromatic polyether copolymers were prepared from the polycondensation of the AB2 monomer, 3,5‐bis[(pentafluorobenzyl)oxy]benzyl alcohol with a variety of fluoroaryl and alkyl bromide AB comonomers. The structures and comonomer distribution of the resulting polymers were characterized in detail. 1H NMR data from kinetic trials illustrated that perfluoroaryl AB comonomer distribution correlated to AB comonomer sterics. 19F NMR data revealed that fluorinated AB monomers and 3‐bromo‐1‐propanol AB monomers were distributed within the AB2 polymer backbone, while longer alkyl bromide AB monomers, 6‐bromo‐1‐hexanol, were mostly distributed along hyperbranched polymer chain ends. In general, as AB comonomer incorporation increased for nonsterically hindered copolymers, thermal decomposition onset increased and glass transition temperatures decreased. The combined data demonstrated the effect of comonomer distribution and sterics on physical properties of AB2‐based polymer systems. The resulting materials were used to cast thin polymer films for measurement of contact angle, which were shown to be directly related to comonomer content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1880–1894  相似文献   

10.
Poly(ethylene terephthalate‐co‐5‐tert‐butyl isophthalate) copolymers, abbreviated as PETtBI, with compositions ranging between 95/5 and 25/75, as well as the two parent homopolymers, PET and PEtBI, were prepared from comonomer mixtures by a two‐step melt‐polycondensation. Polymer intrinsic viscosities varied from 0.4 to 0.7 dL g?1 with weight‐average molecular weights ranging between 31,000 and 80,000. The copolymers were found to have a random microstructure with a composition according to that used in the corresponding feed. The melting temperature and crystallinity of PETtBI decreased with the content in 5‐tert‐butyl isophthalic units, whereas the glass‐transition temperature increased from 82 °C for PET up to 99 °C for PEtBI. Copolymerization slightly improved the thermal stability of PET. Preliminary X‐ray diffraction studies revealed that PETtBI adopt the same crystal structure as PET with the alkylated isophthalic units probably excluded from the crystal lattice. The homopolymer PEtBI appeared to be a highly crystalline polymer taking up a crystal structure clearly different from that of PET and PETtBI copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 1994–2004, 2001  相似文献   

11.
The free‐radical copolymerization of itaconic acid (IA) and styrene in solutions of dimethylformamide and d6‐dimethyl sulfoxide (50 wt %) has been studied by 1H NMR kinetic experiments. Monomer conversion versus time data were used to estimate the ratio kp · kt−0.5 for various comonomer mixture compositions. The ratio kp · kt−0.5 varies from 5.2 · 10−2 for pure styrene to 2.0 · 10−2 mol0.5 L−0.5 s−0.5 for pure IA, indicating a significant decrease in the rate of polymerization. Individual monomer conversion versus time traces were used to map out the comonomer mixture–composition drift up to overall monomer conversions of 60%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed can be observed. This depletion becomes more pronounced at higher levels of IA in the initial comonomer mixture. The kinetic information is supplemented by molecular weight data for IA/styrene copolymers obtained by variation of the comonomer mixture composition. A significant decrease in molecular weight of a factor of 2 can be observed when increasing the mole fraction of IA in the initial reaction mixture from 0 to 0.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 656–664, 2001  相似文献   

12.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

13.
Copolymerization of styrene with (Z)-1,3-pentadiene affords copolymers mostly containing 1,2 pentadiene units. Both the styrene and the pentadiene units are in syndiotactic arrangement but the comonomer sequence distribution is far from bernoullian. Interestingly, the behavior of (Z)-1,3-pentadiene does not change much when polymerization temperature raises from −20 to +20°C, notwithstanding that (Z)-1,3-pentadiene affords a 1,2-syndiotactic homopolymer at −20°C but a prevailingly 1,4 cis homopolymer at +20°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2697–2702, 1997  相似文献   

14.
The copolymerization of ethylene with triphenylamine (TPA)‐containing α‐olefin monomer 1 using a rac‐Et(Ind)2ZrCl2 ( EBIZr )/MAO catalytic system was investigated to prepare polyethylene with pendent TPA groups. Despite the presence of a large excess of TPA moieties, the polymerization reactions efficiently produce copolymers of high‐molecular‐weight with the comonomer incorporation up to 6.1 mol % upon varying the comonomer concentration in the feed. Inspection of the aliphatic region of the 13C‐NMR spectrum and the estimated copolymerization parameters (r 1 ≈ 0 for 1 and rE ≈ 43 for ethylene) reveal the presence of isolated comonomer units in the polymer chain. While UV–vis absorption measurements of the copolymers show an invariant absorption feature, PL spectra exhibit a slightly red‐shifted emission with increasing content of 1 in the polymer chain. All the copolymers show high thermal stability (Td5 > 436 °C), and the electrochemical stability toward oxidation is also observed. Particularly, the copolymer displays hole‐transporting ability for the stable green emission of Alq3 when incorporated into the hole‐transporting layer of an electroluminescence device. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5816–5825, 2008  相似文献   

15.
Low‐charge‐density amphoteric copolymers and terpolymers composed of acrylamide, (3‐acrylamidopropyl)trimethyl ammonium chloride, and the amino acid derived monomers (e.g., N‐acryloyl valine, N‐acryloyl alanine, and N‐acryloyl aspartate) were prepared via free‐radical polymerization in aqueous media to yield terpolymers with random charge distributions and homogeneous compositions. Sodium formate (NaOOCH) was employed as a chain transfer agent during the polymerization to suppress gel effects and broadening of the molecular weight distribution. Terpolymer compositions were determined by 13C and 1H NMR spectroscopy. Terpolymer molecular weights and polydispersity indices were obtained via size exclusion chromatography/multi‐angle laser light scattering, and hydrodynamic diameter values were obtained via dynamic light scattering. The solution properties of low‐charge‐density amphoteric copolymers and terpolymers have been studied as a function of solution pH, ionic strength, and polymer concentration. The low‐charge‐density terpolymers display excellent solubility in deionized (DI) water with no phase separation. The charge‐balanced terpolymers exhibit antipolyelectrolyte behavior at pH values ≥(6.5 ± 0.2). As solution pH is decreased, these charge‐balanced terpolymers become increasingly cationic because of the protonation of the anionic repeat units. Charge‐imbalanced terpolymers generally demonstrate polyelectrolyte behavior, although the effects of intramolecular electrostatic interactions (e.g., polyampholyte effects) on the hydrodynamic volume are evident at certain values of solution pH and salt concentration. The aqueous solution behavior (i.e., globule‐to‐coil transition at the isoelectric point in the presence of salt and globule elongation with increasing charge asymmetry) of the terpolymers in the dilute regime correlates well with that predicted by the polyampholyte solution theories of Dobrynin and Rubinstein as well as Kantor and Kardar. Examination of comonomer charge density, hydrogen‐bonding ability, and spacer group (e.g., the moiety separating the ionic group from the polymer chain) indicates that conformational restrictions of the amino acid comonomers result in increased chain stiffness and higher solution viscosities in DI water and brine solutions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4479–4493, 2006  相似文献   

16.
New ω‐alkenyl‐substituted ansa‐bridged bisindenyl zirconium complexes are prepared and tested as self‐immobilized catalysts for ethene polymerization. But, even at very high concentration of the tethered complexes and low pressure of ethene, there is no evidence of their insertion into the polyethene chain. A “cross polymerization” test, performed by copolymerizing the tethered complexes with ethene using rac‐Me2Si(2‐MeBenzInd)2ZrCl2 ( MBI ), does not lead to their incorporation into the polyethene chain. However, the corresponding ligand proves to be a suitable comonomer for ethene, and, through copolymerization promoted by MBI, innovative poly(ethene‐co‐2,2′‐bis[(1H‐inden‐3′‐yl)‐hex‐5‐ene) copolymers are prepared and characterized by 13C NMR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The influence of the comonomer in the synthesis of poly(propylene‐co ?1‐pentene) copolymers, with rac‐(dimethylsilylbis(1‐indenyl))ZrCl2/Methylaluminoxane at low temperature, has been studied. Changes in the catalyst activity and molecular weight have been analyzed as a function of copolymer composition, and associated with both content and nature of chain defects. The thorough characterization of chain‐end double bonds by means of the 1H NMR technique highlights the particular chain termination pathway, which underlies the so‐called comonomer effect. A specific termination mechanism is proposed based on the preferential regio‐irregular interaction of the active site with 1‐pentene molecules, instead of the one related to the β‐H atom of the last regular inserted unit, either propene or 1‐pentene. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 843–854  相似文献   

18.
We successfully synthesized optically active polymers by using a chiral bisphosphine, (S,S)‐1,2‐bis[boranato(t‐butyl)methylphosphino]ethane, as a key building block. Their structures were characterized with 1H, 13C, and 31P NMR spectra. The obtained polymers exhibited different glass‐transition temperatures depending on the structure of each comonomer, whereas a model compound had a melting point. According to circular dichroism spectra, the difference in the stereochemistry of the comonomers yielded the different higher‐ordered structures of the polymers induced by chiral phosphine units. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 866–872, 2007  相似文献   

19.
Copolyamides based on polyamide‐6,6 (PA‐6,6) were prepared by solid‐state modification (SSM). Para‐ and meta‐xylylenediamine were successfully incorporated into the aliphatic PA‐6,6 backbone at 200 and 230 °C under an inert gas flow. In the initial stage of the SSM below the melting temperature of PA‐6,6, a decrease of the molecular weight was observed due to chain scission, followed by a built up of the molecular weight and incorporation of the comonomer by postcondensation during the next stage. When the solid‐state copolymerization was continued for a sufficiently long time, the starting PA‐6,6 molecular weight was regained. The incorporation of the comonomer into the PA‐6,6 main chain was confirmed by size exclusion chromatography (SEC) with ultraviolet detection, which showed the presence of aromatic moieties in the final high‐molecular weight SSM product. The occurrence of the transamidation reaction was also proven by 1H nuclear magnetic resonance (NMR) spectroscopy. As the transamidation was limited to the amorphous phase, this SSM resulted in a nonrandom overall structure of the PA copolymer as shown by the degree of randomness determined using 13C NMR spectroscopy. The thermal properties of the SSM products were compared with melt‐synthesized copolyamides of similar chemical composition. The higher melting and higher crystallization temperatures of the solid state‐modified copolyamides confirmed their nonrandom, block‐like chemical microstructure, whereas the melt‐synthesized copolyamides were random. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5118–5129  相似文献   

20.
The catalyst system i‐Pr(Cp)(9‐Flu)ZrCl2/methylaluminoxane was used for the synthesis of random syndiotactic copolymers of propylene with 1‐hexene, 1‐dodecene, and 1‐octadecene as comonomers. An investigation of the microstructure by 13C NMR spectroscopy revealed that the stereoregularity of the copolymers decreased because of an increase in skipped insertions in the presence of the higher 1‐olefin. The melting temperature of the copolymers, as measured by differential scanning calorimetry (DSC), decreased linearly with increasing comonomer content independently of the comonomer nature. During the DSC heating cycle, an exothermic peak indicating a crystallization process was observed. The decrease in the crystallization temperature with higher 1‐olefin content, measured by crystallization analysis fractionation, indicated a small but significant dependence on the nature of the comonomer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 128–140, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号