首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, we propose block Krylov subspace methods for solving the Sylvester matrix equation AXXB=C. We first consider the case when A is large and B is of small size. We use block Krylov subspace methods such as the block Arnoldi and the block Lanczos algorithms to compute approximations to the solution of the Sylvester matrix equation. When both matrices are large and the right-hand side matrix is of small rank, we will show how to extract low-rank approximations. We give some theoretical results such as perturbation results and bounds of the norm of the error. Numerical experiments will also be given to show the effectiveness of these block methods.  相似文献   

2.
This paper concerns the use of Krylov subspace methods for the solution of nearly singular nonsymmetric linear systems. We show that the incomplete orthogonalization methods (IOM) in conjunction with certain deflation techniques of Stewart, Chan, and Saad can be used to solve large nonsymmetric linear systems which are nearly singular.This work was supported by the National Science Foundation, Grants DMS-8403148 and DCR-81-16779, and by the Office of Naval Research, Contract N00014-85-K-0725.  相似文献   

3.
Krylov子空间投影法及其在油藏数值模拟中的应用   总被引:3,自引:0,他引:3  
Krylov子空间投影法是一类非常有效的大型线性代数方程组解法,随着左右空间Lm、Km的不同选取可以得到许多人们熟知的方法.按矩阵Hm的不同类型,将Krylov子空间方法分成两大类,简要分析了这两类方法的优缺点及其最新进展.将目前最为可靠实用的广义最小余量法(GMRES)应用于油藏数值模拟计算问题,利用矩阵分块技术,采用块拟消去法(PE)对系数阵进行预处理.计算结果表明本文的预处理GMRES方法优于目前使用较多的预处理正交极小化ORTHMIN方法,最后还讨论了投影类方法的局限和今后的可能发展方向.  相似文献   

4.
We study the roundoff error propagation in an algorithm which computes the orthonormal basis of a Krylov subspace with Householder orthonormal matrices. Moreover, we analyze special implementations of the classical GMRES algorithm, and of the Full Orthogonalization Method. These techniques approximate the solution of a large sparse linear system of equations on a sequence of Krylov subspaces of small dimension. The roundoff error analyses show upper bounds for the error affecting the computed approximated solutions.This work was carried out with the financial contribution of the Human Capital and Mobility Programme of the European Union grant ERB4050PL921378.  相似文献   

5.
Krylov iterative methods usually solve an optimization problem, per iteration, to obtain a vector whose components are the step lengths associated with the previous search directions. This vector can be viewed as the solution of a multiparameter optimization problem. In that sense, Krylov methods can be combined with the spectral choice of step length that has recently been developed to accelerate descent methods in optimization. In this work, we discuss different spectral variants of Krylov methods and present encouraging preliminary numerical experiments, with and without preconditioning.  相似文献   

6.
李红伟  卢琳璋 《数学研究》2006,39(3):229-239
本文给出了重新启动的LGMRES方法的一种代价更小的实现方式.这种做法基于消除以下减慢收敛速度的现象:重新启动的simpler GMRES的每次循环结束时得到的残向量经常交替方向,与重新启动的GMRES的情形类似.这种新的变形的方法的优点是它比重新启动的LGMRES所需要的计算量要少.大量的例子表明该方法计算速度更快.  相似文献   

7.
Let A be a matrix of order n and let be a subspace of dimension k. In this note, we determine a matrix E of minimal norm such that is a Krylov subspace of A+E.  相似文献   

8.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

9.
The restarted block generalized minimum residual method (BGMRES) with deflated restarting (BGMRES‐DR) was proposed by Morgan to dump the negative effect of small eigenvalues from the convergence of the BGMRES method. More recently, Wu et al. introduced the shifted BGMRES method (BGMRES‐Sh) for solving the sequence of linear systems with multiple shifts and multiple right‐hand sides. In this paper, a new shifted block Krylov subspace algorithm that combines the characteristics of both the BGMRES‐DR and the BGMRES‐Sh methods is proposed. Moreover, our method is enhanced with a seed selection strategy to handle the case of almost linear dependence of the right‐hand sides. Numerical experiments illustrate the potential of the proposed method to solve efficiently the sequence of linear systems with multiple shifts and multiple right‐hand sides, with and without preconditioner, also against other state‐of‐the‐art solvers.  相似文献   

10.
We consider the GMRES(m,k) method for the solution of linear systems Ax=b, i.e. the restarted GMRES with restart m where to the standard Krylov subspace of dimension m the other subspace of dimension k is added, resulting in an augmented Krylov subspace. This additional subspace approximates usually an A‐invariant subspace. The eigenspaces associated with the eigenvalues closest to zero are commonly used, as those are thought to hinder convergence the most. The behaviour of residual bounds is described for various situations which can arise during the GMRES(m,k) process. The obtained estimates for the norm of the residual vector suggest sufficient conditions for convergence of GMRES(m,k) and illustrate that these augmentation techniques can remove stagnation of GMRES(m) in many cases. All estimates are independent of the choice of an initial approximation. Conclusions and remarks assessing numerically the quality of proposed bounds conclude the paper. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We discuss the convergence of Krylov subspace methods for equationsx =Tx +f whereT is a sum of two operators,T =B +K, whereB is bounded andK is nuclear. Bounds are given for inf Q k (B+K) and for inf p k (B+K), where the infimum is over all polynomials of degreek, such thatQ k is monic andp k is normalized:p k (1) = 1.  相似文献   

12.
In this paper, the numerical evaluation of matrix functions expressed in partial fraction form is addressed. The shift‐and‐invert Krylov method is analyzed, with special attention to error estimates. Such estimates give insights into the selection of the shift parameter and lead to a simple and effective restart procedure. Applications to the class of Mittag–Leffler functions are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
We give a geometric framework for analysing iterative methods on singular linear systems A x = b and apply them to Krylov subspace methods. The idea is to decompose the method into the ?(A) component and its orthogonal complement ?(A)?, where ?(A) is the range of A. We apply the framework to GMRES, GMRES(k) and GCR(k), and derive conditions for convergence without breakdown for inconsistent and consistent singular systems. The approach also gives a geometric interpretation and different proofs of the conditions obtained by Brown and Walker for GMRES. We also give examples arising in the finite difference discretization of two‐point boundary value problems of an ordinary differential equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We derive a priori error bounds for the block Krylov subspace methods in terms of “the sine” between the desired invariant subspace and the block Krylov subspace. The obtained results can be seen as the block analogue of the classical a priori estimates for standard projection methods.  相似文献   

15.
贾仲孝 《数学学报》1998,41(5):915-924
本文用统一的方式研究了当系数矩阵A亏损且其谱位于右(左)半开平面时很多求解大规模非Hermite线性方程组的Krylov子空间型方法的收敛性,建立了有关的理论收敛界,揭示了收敛速度和A的谱之间的内在联系.结果证明,当如下三种情形之一出现时,这些方法的收敛速度将会减慢:A亏损,其谱的分布不理想,或A的Jordan基病态.在证明中,我们给出了Chebyshev多项式的高阶导数在复平面中某椭圆域上的若干新性质,其中之一修正了文献中广泛使用的一个结果.  相似文献   

16.
Lanczos方法是求解大型线性方程组的常用方法.遗憾的是,在Lanczos过程中通常会发生算法中断或数值不稳定的情况.将给出求解大型对称线性方程组的收缩Lanczos方法,即DLanczos方法.新算法将采用增广子空间技术,在Lanczos过程中向Krylov子空间加入少量绝对值较小的特征值所对应的特征向量进行收缩.数值实验表明,新算法比Lanczos方法收敛速度更快,并且适合求解病态对称线性方程组.  相似文献   

17.
18.
We consider two Krylov subspace methods for solving linear systems, which are the minimal residual method and the orthogonal residual method. These two methods are studied without referring to any particular implementations. By using the Petrov–Galerkin condition, we describe the residual norms of these two methods in terms of Krylov vectors, and the relationship between there two norms. We define the Ritz singular values, and prove that the convergence of these two methods is governed by the convergence of the Ritz singular values. AMS subject classification 65F10  相似文献   

19.
A Convergence Analysis of Gmres and Fom Methods for Sylvester Equations   总被引:3,自引:0,他引:3  
We discuss convergence properties of the GMRES and FOM methods for solving large Sylvester equations of the form AXXB=C. In particular we show the importance of the separation between the fields of values of A and B on the convergence behavior of GMRES. We also discuss the stagnation phenomenon in GMRES and its consequence on FOM. We generalize the issue of breakdown in the block-Arnoldi algorithm and explain its consequence on FOM and GMRES methods. Several numerical tests illustrate the theoretical results.  相似文献   

20.
The task of extracting from a Krylov decomposition the approximation to an eigenpair that yields the smallest backward error can be phrased as finding the smallest perturbation which makes an associated matrix pair uncontrollable. Exploiting this relationship, we propose a new deflation criterion, which potentially admits earlier deflations than standard deflation criteria. Along these lines, a new deflation procedure for shift-and-invert Krylov methods is developed. Numerical experiments demonstrate the merits and limitations of this approach. This author has been supported by a DFG Emmy Noether fellowship and in part by the Swedish Foundation for Strategic Research under the Frame Programme Grant A3 02:128.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号