首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阳离子和两性表面活性剂对石英表面润湿性的影响   总被引:3,自引:0,他引:3  
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)溶液在石英表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势, 讨论了黏附张力和黏附功的变化规律. 研究发现, 两种表面活性剂在高能的石英表面的吸附造成石英-水的界面自由能(γsl)增大. C16PB通过弱相互作用随机吸附到石英表面, 其增大γsl的能力与降低表面张力(γ1g)的能力相当, 接触角(θ)随浓度变化不大. C16PC 随体相浓度增大能够在石英表面通过静电作用形成定向排列的单分子层, 而后在临界胶束浓度(cmc)附近形成双层结构, 接触角随浓度变化的趋势可分为4个区域, 并通过一个极大值.  相似文献   

2.
Dodecyl polyoxyethylene(4) polyoxypropylene(5) ether (LS45) is an outstanding microemulsifier in supercritical CO2. The dynamic surface tension (DST) of this nonionic surfactant was investigated by using the maximum bubble pressure instrument. The effects of concentration and temperature on DST parameters (n, ti, t*, tm, and R1/2) and its adsorption mechanism were discussed by Rosen's empirical equation and the asymptotic Ward and Tordai equation for the LS45 solution system. Finally, the parameters at 1 s related to Draves's wetting performance, pC20(1s), C1s (i)*, and C1s*, analyzed. The results showed that were with increase of bulk concentration and temperature, dynamic surface activity increased. Parameters at 1 s indicated that LS45 is of high surface activity and a very good wetting agent. One‐second related parameters, C1s (i)* and C1s*, are valuable in the treatment of practical applications of surfactants. Optimum wetting can be expected at the concentration of 4.8×10?4 mol/dm3 for LS45 solution.  相似文献   

3.
Improving the utilization rate of pesticides is key to achieve a reduction and synergism, and adding appropriate surfactant to pesticide preparation is an effective way to improve pesticide utilization. Fluorinated surfactants have excellent surface activity, thermal and chemical stability, but long-chain linear perfluoroalkyl derivatives are highly toxic, obvious persistence and high bioaccumulation in the environment. Therefore, new strategies for designing fluorinated surfactants which combine excellent surface activity and environmental safety would be useful. In this study, four non-ionic gemini surfactants with short fluorocarbon chains were synthesized. The surface activities of the resulting surfactants were assessed on the basis of equilibrium surface tension, dynamic surface tension, and contact angle. Compared with their monomeric counterparts, the gemini surfactants had markedly lower critical micelle concentrations and higher diffusivities, as well as better wetting abilities. We selected a single-chain surfactant and a gemini surfactant with good surface activities as synergists for the glyphosate water agent. Both surfactants clearly improved the efficacy of the herbicide, but the gemini surfactant had a significantly greater effect than the single-chain surfactant. An acute toxicity test indicated that the gemini surfactant showed slight toxicity to rats.  相似文献   

4.
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.  相似文献   

5.
The adsorption excess isotherms of binary mixtures adsorbed on hard solids were calculated by means of surface tension and contact angle measurements using the Gibbs adsorption isotherm equation. The calculation procedure is described in detail using the authors' own measurements of mixtures containing ethylene glycol(1)/water(2) on Teflon and poly(vinyl chloride), and water(1)/n-propanol(2) on Teflon. On the basis of these results and also from surface tensions and contact angles on hard solids published by other authors, all types of isotherms were found as given for porous adsorbents in the classification of Schay and Nagy. In addition to those, new isotherm types are proposed.  相似文献   

6.
The nature and strength of intermolecular and surface forces are the key factors that influence the solvation, adhesion and wetting phenomena. The universal cohesive energy prediction equation based on conductor-like screening model (COSMO-UCE) was extended from like molecules (pure liquids) to unlike molecules (dissimilar liquids). A new molecular-thermodynamic model of interfacial tension (IFT) for liquid-liquid and solid-liquid systems was developed in this work, which can predict the surface free energy of solid materials and interfacial energy directly through cohesive energy calculations based on COSMO-UCE. The applications of this model in prediction of IFT for water-organic, solid (n-hexatriacontane, polytetrafluoroethylene (PTFE) and octadecyl-amine monolayer)-liquid systems have been verified extensively with successful results; which indicates that this is a straightforward and reliable model of surface and interfacial energies through predicting intermolecular interactions based on merely molecular structure (profiles of surface segment charge density), the dimensionless wetting coefficient RA/C can characterize the wetting behavior (poor adhesive (non-wetting), wetting, spreading) of liquids on the surface of solid materials very well.  相似文献   

7.
In this paper, we report a novel synthesis of poly(ethylene oxide monooleate-block-DL-lactide) (MOPEO-PLA) in the presence of stannous 2-ethylhexanoate catalyst. By utilizing the surfactant property and the reactive double bond of the amphiphilic MOPEO-PLA, various characteristics of PLA microspheres, such as surface and internal structure, surface morphology, release property, and so on, may potentially be controlled. MOPEO-PLA was found to be hydrophobic enough to prevent loss by dissolution into aqueous solution, which is often a problem for MOPEO. Furthermore, the interfacial tension measurements of a MOPEO-PLA/toluene/water system revealed that MOPEO-PLA had a good surface activity almost equal to that of MOPEO. The MOPEO-PLA/PLA blend films were prepared by solvent casting on a water layer. Contact-angle measurements of MOPEO-PLA/PLA blend films confirmed that the hydrophilic PEO segments were selectivity accumulated at the oil/water interface. Moreover, the surface free energy on the 'water side' of the MOPEO-PLA/PLA blend films was increased because of the increase in polar components as a result of the ether bonds of the PEO segments. Schematic illustration of the adsorption property of a) MOPEO-PLA with a high-molecular-weight PLA segment and b) MOPEO-PLA with a low-molecular-weight PLA segment at an ethyl acetate/water interface.  相似文献   

8.
Due to the increasing practical use of mixtures of flavonoids with nonionic surfactants the presented studies were based on the measurements of surface tension and conductivity of aqueous solution of the quercetin (Q) and rutin (Ru) in the mixtures with Triton X-114 (TX114) and Tween 80 (T80) as well as the contact angle of model liquids on the PTFE surface covered by the quercetin and rutin layers. Based on the obtained results components and parameters of the quercetin and rutin surface tension were determined and the mutual influence of Q and Ru in the mixtures with TX114 and T80 on their adsorption and volumetric properties were considered. It was found, among others, that based on the surface tension isotherms of the aqueous solution of the single flavonoid and nonionic surfactant, the surface tension isotherms of the aqueous solution of their mixture, the composition of the mixed monolayer at the water-air interface as well as the CMC of flavonoid + nonionic surfactant mixture can be predicted. The standard Gibbs energy, enthalpy and entropy of the adsorption and aggregation of the studied mixtures were also found, showing the mechanism of the adsorption and aggregation processes of the flavonoid + nonionic surfactant mixture.  相似文献   

9.
The synthesis of carbohydrate surfactants bearing carbosilane, silane, polysilane and non-permethylated siloxane moieties is described. These surfactants consist of three structural elements: (1) a silicon-containing moiety, (2) a spacer and (3) a carbohydrate unit. Additionally two different types of mixed structures have been synthesized: (a) single-chained carbosilane–siloxane surfactants and (b) double-chained combinations of carbo- silanes, silanes and siloxanes. The wetting behaviour of the key intermediates, the allyl glycidyl derivatives, has been investigated by static surface tension (γlv, σ) and wetting tension (γsv−γsl, α) measurements on a non-polar perfluorinated surface (FEP® plate). The contact angles obtained for these pure liquids are not a linear function of the surface tension but depend on the polarity of the substructures. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Solid wettability is especially important for biomaterials and implants in the context of microbial adhesion to their surfaces. This adhesion can be inhibited by changes in biomaterial surface roughness and/or its hydrophilic–hydrophobic balance. The surface hydrophilic–hydrophobic balance can be changed by the specifics of the surface treatment (proper conditions of surface preparation) or adsorption of different substances. From the practical point of view, in systems that include biomaterials and implants, the adsorption of compounds characterized by bacteriostatic or bactericidal properties is especially desirable. Substances that are able to change the surface properties of a given solid as a result of their adsorption and possess at least bacteriostatic properties include sucrose ester surfactants. Thus, in our studies the analysis of a specific surface treatment effect (proper passivation conditions) on a biomaterial alloy’s (Ti6Al4V ELI, Grade 23) properties was performed based on measurements of the contact angles of water, formamide and diiodomethane. In addition, the changes in the studied solid surface’s properties resulting from the sucrose monodecanoate (SMD) and sucrose monolaurate (SML) molecules’ adsorption at the solid–water interface were also analyzed. For the analysis, the values of the contact angles of aqueous solutions of SMD and SML were measured at 293 K, and the surface tensions of the aqueous solutions of studied surfactants measured earlier were tested. From the above-mentioned tests, it was found that water environment significantly influences the components and parameters of Ti6Al4V ELI’s surface tension. It also occurred that the addition of both SMD and SML to water (separately) caused a drop in the water contact angle on Ti6Al4V ELI’s surface. However, the sucrose monolaurate surfactant is characterized by a slightly better tendency towards adsorption at the solid–water interface in the studied system compared to sucrose monodecanoate. Additionally, based on the components and parameters of Ti6Al4V ELI’s surface tension calculated from the proper values of components and parameters of model liquids, it was possible to predict the wettability of Ti6Al4V ELI using the aqueous solutions of SMD and SML at various concentrations in the solution.  相似文献   

11.
Low‐rate dynamic contact angles of 12 liquids on a poly(methyl methacrylate/ethyl methacrylate, 30/70) P(MMA/EMA, 30/70) copolymer were measured by an automated axisymmetric drop shape analysis‐profile (ADSA‐P). It was found that five liquids yield nonconstant contact angles, and/or dissolve the polymer on contact. From the experimental contact angles of the remaining seven liquids, it is found that the liquid–vapor surface tension times cosine of the contact angle changes smoothly with the liquid–vapor surface tension (i.e., γl|Kv cos θ depends only on γl|Kv for a given solid surface or solid surface tension). This contact angle pattern is in harmony with those from other methacrylate polymer surfaces previously studied.45,50 The solid–vapor surface tension calculated from the equation‐of‐state approach for solid–liquid interfacial tensions14 is found to be 35.1 mJ/m2, with a 95% confidence limit of ± 0.3 mJ/m2, from the experimental contact angles of the seven liquids. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2039–2051, 1999  相似文献   

12.
Using Gibbs method of dividing surfaces, the condition of equilibrium of a sessile drop on a flat non-deformable solid substrate is investigated. The dependence of the line tension on the curvature radius of the dividing three-phase contact line is found. It has been derived a relationship between the partial derivative of the line tension with respect to the curvature radius of the three-phase contact line (which stands in the generalized Young equation) and the total derivative of the line tension with respect to the same radius along the equilibrium states. Various approximated formulas of the generalized Young equation used in the literature are analyzed.  相似文献   

13.
14.
The spreading behaviour of defined trimethylsilane‐based surfactants of general formula (CH3)3Si(CH2)6(OCH2CH2) nOCH3, n = 2–6, on five different solid surfaces at 21 °C has been investigated. Compounds bearing short diethylene and triethylene glycol hydrophiles do not spread. For the longer‐chained tetraethylene to hexaethylene glycol derivatives, the ability to spread depends on the surface energy. Rapid spreading is restricted to the slightly polar surface of 40 mN m−1 surface energy. Lower or higher surface energies considerably reduce the spreading rates. The phase behaviour of the solutions substantially influences the spreading process. The dispersed systems of the tetraethylene glycol derivative spread constantly over long time intervals. The dispersions of the pentaethylene glycol analogue are very close to the temperature for a transition into the one‐phase state. A retardation of the spreading process occurs after a few seconds. Micellar solutions of the hexaethylene glycol derivative either spread very slowly or stop spreading after a few seconds. The largest spreading areas and highest initial spreading rates were found for the 0.1 wt% solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
In situ techniques are indispensable to understanding many topics in surface chemistry. As a consequence, several spectroscopic methods have been developed to provide molecular‐level information that only spectroscopy can supply. However, as important as this information is, it is just as critical to realize that nearly all surfaces under investigation have spatial heterogeneities of the order of nanometers to millimeters; thus, spatial analysis is very important to the overall interpretation. This Minireview focuses on a few of the recent developments in spectroscopic techniques that can provide spatial, spectroscopic, and in situ information. These techniques include photo‐electron microscopy, infrared and Raman imaging, and nonlinear optical imaging vibrational spectroscopy as applied to topics in corrosion, catalysis and self‐assembled monolayers.  相似文献   

16.
The acid-base character of oxide supports is crucial for catalytic reactions. In this work, the acid-base properties of five oxide surfaces common in heterogeneous catalysis were investigated and related to their interaction with monolignol compounds derived from lignin. We have used density functional theory simulations also to understand the role of the surfaces’ hydroxylation state. The results show that moderate hydroxyl coverage on the amphoteric γ-Al2O3 (110) slightly strengthens the oxy-compounds’ adsorption due to an increase in Lewis acidity. Similarly, low hydroxyl coverage on the reducible TiO2 (101) enlarges its adsorption capacity by up to 42 % compared with its clean surface. The higher affinity is attributed to the more favourable interaction between the surface-OH groups and the aromatic rings. Overall, the results indicate that hydroxyl coverage enhances the amphoteric and reducible adsorption capacity towards aromatic species.  相似文献   

17.
The post‐transition‐state dynamics in CO oxidation on Pt surfaces are investigated using DFT‐based ab initio molecular dynamics simulations. While the initial CO2 formed on a terrace site on Pt(111) desorbs directly, it is temporarily trapped in a chemisorption well on a Pt(332) step site. These two reaction channels thus produce CO2 with hyperthermal and thermal velocities with drastically different angular distributions, in agreement with recent experiments (Nature, 2018 , 558, 280–283). The chemisorbed CO2 is formed by electron transfer from the metal to the adsorbate, resulting in a bent geometry. While chemisorbed CO2 on Pt(111) is unstable, it is stable by 0.2 eV on a Pt(332) step site. This helps explain why newly formed CO2 produced at step sites desorbs with far lower translational energies than those formed at terraces. This work shows that steps and other defects could be potentially important in finding optimal conditions for the chemical activation and dissociation of CO2.  相似文献   

18.
Twelve anionic monoisomeric surfactants based on the alkyl benzene sulfonic acid were prepared. In two sets of experiments, the (nmin) values were determined at 28 and 70°C for them. The n-hydrocarbon scans (n-C5 to n-C18) against the interfacial tension were used to determine the (nmin) values. The factors affecting (nmin) such as; molecular weight, branching of side chain, temperature and electrolyte addition were investigated. From the obtained results, it was found that the surfactants which has the highest molecular (8φ C15 ABS) gave (nmin) equal 8, so it can be used in the enhanced oil recovery(EOR) without additives (the suitable (nmin) for EOR between 7-9). Otherwise, the lowest molecular weight surfactant (7φ C13 ABS) gave (nmin) equal 5 without addition of alcohols or electrolyte. This case needs some additives to adjust the (nmin) in the range of 7 to 9. By investigation the factors affecting (nmin), it was found that the side chain of alkyl benzene shifted the (nmin) to the highest values. The increasing of temperature decreased the (nmin) values. Also, it was found that the (nmin) increased to high value by adding the electrolytes and alcohols. The mixture between surfactants with and without side chain shifted the (nmin) to the highest value. Using these parameters, the alkane carbon number (nmin) can be used to select the suitable solvent during the preparation of emulsion to get the minimum interfacial tension at which the maximum emulsion stability should be obtained and also to select the surfactant for EOR.  相似文献   

19.
Iron(III) complexes of tetraamidato macrocyclic ligands (TAMLs), [Fe{4‐XC6H3‐1,2‐(NCOCMe2NCO)2CR2}(OH2)]?, 1 ( 1 a : X=H, R=Me; 1 b : X=COOH, R=Me); 1 c : X=CONH(CH2)2COOH, R=Me; 1 d : CONH(CH2)2NMe2, R=Me; 1 e : X=CONH(CH2)2NMe3+, R=Me; 1 f : X=H, R=F), have been tested as catalysts for the oxidative decolorization of Orange II and Sudan III dyes by hydrogen peroxide and tert‐butyl hydroperoxide in the presence of micelles that are neutral (Triton X‐100), positively charged (cetyltrimethylammonium bromide, CTAB), and negatively charged (sodium dodecyl sulfate, SDS). The previously reported mechanism of catalysis involves the formation of an oxidized intermediate from 1 and ROOH (kI) followed by dye bleaching (kII). The micellar effects on kI and kII have been separately studied and analyzed by using the Berezin pseudophase model of micellar catalysis. The largest micellar acceleration in terms of kI occurs for the 1 a ? tBuOOH? CTAB system. At pH 9.0–10.5 the rate constant kI increased by approximately five times with increasing CTAB concentration and then gradually decreased. There was no acceleration at higher pH, presumably owing to the deprotonation of the axial water ligand of 1 a in this pH range. The kI value was only slightly affected by SDS (in the oxidation of Orange II), but was strongly decelerated by Triton X‐100. No oxidation of the water‐insoluble, hydrophobic dye Sudan III was observed in the presence of the SDS micelles. The kII value was accelerated by cationic CTAB micelles when the hydrophobic primary oxidant tert‐butyl hydroperoxide was used. It is hypothesized that tBuOOH may affect the CTAB micelles and increase the binding of the oxidized catalysts. The tBuOOH? CTAB combination accelerated both of the catalysis steps kI and kII.  相似文献   

20.
刘嘉森  陶勇  黄梅芬 《化学学报》1988,46(5):483-488
从四川宜宾产翼梗五味子的果实中分得七个四氢萘木脂素, 其中三个鉴定为: 恩施辛enshicine, 表恩施辛epienshicine和schisandrone, 其余四个均属新化合物, 命名为五脂素wnlignan A1, 五脂素A2, 表五脂素epiwnlignan A1和epischisandrone. 它们的结构(包括绝对构型)由光谱分析和化学转化为(+)-dimethylguaiacine和(-)-dimethylisoguaiacine而阐明. 四个新化合物皆有不同程度的体外抗癌活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号