首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel polyurethane iniferter, synthesized from equal moles of toluene diisocyanate and 1,1,2,2-tetraphenyl-1,2-ethanediol, was used to polymerize acrylonitrile to assess whether it proceeded via a “living” radical polymerization mechanism. From the kinetic results, the rate of polymerization could be expressed as Rpα[BPT]0.96[AN]1.64. The increase of number-average molecular weight with increase of both conversion and polymerization time, the bimodal molecular weight distribution in gel permeation chromatography and the increase of molecular weight in the post-polymerization of polyacrylonitrile confirm that the present tetraphenylethane-based polyurethane iniferter follows a “living” radical polymerization mechanism. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A general method for the transformation of “living” carbocationic into “living” radical polymerization, without any modification of chain ends, is reported for the preparation of ABA block copolymers. For example, α,ω-difunctional polyisobutene, capped with several units of styrene, Cl-St-PIB-St-Cl, prepared cationically (Mn = 7800, Mw/Mn = 1.31) was used as an efficient difunctional macroinitiator for homogeneous “living” atom transfer radical polymerization to prepare triblock copolymers with styrene, PSt-PIB-PSt (Mn = 28,800, Mw/Mn = 1.14), methyl acrylate, PMA-PIB-PMA (Mn = 31,810, Mw/Mn = 1.42), isobornyl acrylate, PIBA-PIB-PIBA (Mn = 33,500, Mw/Mn = 1.21), and methyl methacrylate, PMMA-PIB-PMMA (Mn = 33,500, Mw/Mn = 1.47). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3595–3601, 1997  相似文献   

3.
Polymers containing electrophilic moieties, such as activated esters, epoxides, and alkyl halides, can be readily modified with a variety of nucleophiles to produce useful functional materials. The modification of epoxide‐containing polymers with amines and other strong nucleophiles is well‐documented, but there are no reports on the modification of such polymers with alcohols. Using phenyloxirane and glycidyl butyrate as low molecular weight model compounds, it was determined that the acid‐catalyzed ring‐opening of aryl‐substituted epoxides by alcohols to form β‐hydroxy ether products was significantly more efficient than that of alkyl‐substituted epoxides. An aryl epoxide‐type styrenic monomer, 4‐vinylphenyloxirane (4VPO), was synthesized in high yield using an improved procedure and then polymerized in a controlled manner under reversible addition‐fragmentation chain‐transfer (RAFT) polymerization conditions. A successful chain extension with styrene proved the high degree of chain‐end functionalization of the poly4VPO‐based macro chain transfer agent. Poly4VPO was modified with a library of alcohols and phenols, some of which contained reactive functionalities, e.g., azide, alkyne, allyl, etc., using either CBr4 (in PhCN at 90 °C for 2–3 days) or BF3 (in CH2Cl2 at ambient temperature over 30 min) as the catalyst. The resulting β‐hydroxy ether‐functionalized homopolymers were characterized using size exclusion chromatography, 1H NMR and IR spectroscopy, and thermal gravimetric analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1132–1144  相似文献   

4.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
A facile homogeneous polymerization system involving the iniferter agent 1‐cyano‐1‐methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0/[MANDC]0/[Cu(OAc)2]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical “living”/controlled features of “living” radical polymerization, even with ppm level catalyst Cu(OAc)2, first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. 1H NMR spectra and chain‐extension experiments further confirm the “living” characteristics of this process. A plausible mechanism is discussed.

  相似文献   


6.
Polymer brushes were prepared by using the reversible addition fragmentation chain transfer (RAFT) technique. The silicon substrates (Si (111) surface) were modified with ethyl xanthate groups which were introduced by the treatment of Si (111) surface with sodium ethyl xanthate. The polymer brushes were then prepared under RAFT conditions from the Si (111) wafer. Its “living” characteristics were determined by a series of characterizations including gel permeation chromatography (GPC), ellipsometry, and contact angle measurements. The results showed a well‐defined graft layer consisting of polymer brushes with low‐polydispersity could be prepared directly on Si (111)‐X surface (where X represents an ethyl xanthate groups). The structure of the polymer brushes was characterized and confirmed with the surface sensitive techniques such as X‐ray photoelectron spectroscopy (XPS) and scanning probe microscopy (SPM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This article describes for the first time the development of a new polymerization technique by introducing iniferter‐induced “living” radical polymerization mechanism into precipitation polymerization and its application in the molecular imprinting field. The resulting iniferter‐induced “living” radical precipitation polymerization (ILRPP) has proven to be an effective approach for generating not only narrow disperse poly(ethylene glycol dimethacrylate) microspheres but also molecularly imprinted polymer (MIP) microspheres with obvious molecular imprinting effects towards the template (a herbicide 2,4‐dichlorophenoxyacetic acid (2,4‐D)), rather fast template rebinding kinetics, and appreciable selectivity over structurally related compounds. The binding association constant Ka and apparent maximum number Nmax for the high‐affinity sites of the 2,4‐D imprinted polymer were determined by Scatchard analysis and found to be 1.18 × 104 M?1 and 4.37 μmol/g, respectively. In addition, the general applicability of ILRPP in molecular imprinting was also confirmed by the successful preparation of MIP microspheres with another template (2‐chloromandelic acid). In particular, the living nature of ILRPP makes it highly useful for the facile one‐pot synthesis of functional polymer/MIP microspheres with surface‐bound iniferter groups, which allows their direct controlled surface modification via surface‐initiated iniferter polymerization and is thus of great potential in preparing advanced polymer/MIP materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3217–3228, 2010  相似文献   

8.
Well‐defined hyperbranched polystyrenes have been successfully prepared by polymerization of AB2 macromonomer, polystyrene containing an azide group at its one end and two terminal propargyl groups at the other end via click reaction. For preparation of AB2 macromonomers, an ATRP initiator, bispropargyl 2‐bromosuccinate (BPBS) with two propargyl groups and one bromine group was synthesized by the successive bromination and esterification reaction of L ‐aspartic acid. The resulting BPBS initiated the ATRP of St, and subsequently, the terminal bromine groups of (CH≡C)2‐PS‐Brs were substituted by N3 via the reaction with sodium azide resulting the AB2 macromonomer, (CH≡C)2‐PS‐N3 with various molecular weights. All intermediates and the resultant polymers were characterized by GPC, 1H NMR, FTIR, and MALLS methods. The polymerization kinetics study showed fast increase of DP at the initial stage of polymerization and then slow increase of their DP. The final “HyperMacs” have high‐molecular weight up to Mw,MALLS = 340,000 g/mol, their molecular weight distributions were moderately narrow (Mw/Mn = 1.47–1.65). The ratios of [η]H/[η]L of the HyperMacs formed in the polymerization system increased with evolution of polymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 454–462, 2010  相似文献   

9.
Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane (MDP) in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO) has been achieved to afford a chain polyester (PMDP) with di-t-butyl peroxide (DTBP) as an initiator at 125°C. The polydispersity of the polymers decreases as the concentration of TEMPO is increased. At high TEMPO concentrations, the polydispersity as low as 1.2 was obtained, which is below the theoretical lower limit for a conventional free radical polymerization. A linear relationship between the number-average molecular weight (Mn) and the monomer conversion was observed with the best-fit line passing very close to the origin of the Mn-conversion plot. The isolated and purified TEMPO-capped PMDP polymers have been employed to prepare chain extended polymers upon addition of more MDP monomer. These results are suggestive of the “living” polymerization process. A possible polymerization mechanism might involve thermal homolysis of the TEMPO-PMDP bonds followed by the addition of the monomers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 761–771, 1998  相似文献   

10.
The bulk polymerization of methyl methacrylate (MMA) initiated with diethyl 2,3-dicyano-2,3-diphenylsuccinate (DCDPS) was studied. This polymerization showed some “living” characteristics; that is, both the yield and the molecular weight of the resulting polymers increased with reaction time, and the resultant polymer can be extended by adding MMA. The molecular weight distribution of PMMA obtained at high conversion is fairly narrow (Mw/Mn = 1.24≈1.34). It was confirmed that DCDPS can serve as a thermal iniferter for MMA polymerization by a “living” radical mechanism. Furthermore, the PMMA obtained can act as a macroinitiator for radical polymerization of styrene (St) to give a block copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4610–4615, 1999  相似文献   

11.
We describe the basic kinetic features of “living” polymerizations controlled and regulated by persistent radicals or related species and by reversible atom transfer. In these systems a special kinetic phenomenon operates—the Persistent Radical Effect. It is also known from selective organic syntheses and reflects a self-inhibition of the termination reaction. Analytical equations for the polymerization rates and for the polydispersities of the resulting polymers are presented, and important requirements for reaction rate constants leading to control are outlined. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1885–1901, 1999  相似文献   

12.
Macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) consisting of macrocyclic poly(2‐hydroxylethyl methacrylate) (c‐PHEMA) as backbone and polystyrene‐b‐poly(ethylene oxide) (PS‐b‐PEO) amphiphilic block copolymers as side chains were synthesized by the combination of atom transfer radical polymerization (ATRP), click chemistry, and single‐electron transfer nitroxide radical coupling (SET‐NRC). First, a linear α‐alkyne‐ω‐azido heterodifunctional PHEMA (l‐HC?C‐PHEMA‐N3) was prepared by ATRP of HEMA using 3‐(trimethylsilyl)propargyl 2‐bromoisobutyrate as initiator, and then chlorine end groups were transformed to ? N3 group by nucleophilic substitution reaction in DMF in the presence of an excess of NaN3. The 3‐trimethylsilyl groups could be removed in the presence of tetrabutylammonium fluoride, and the product was cyclized by “click” chemistry in high dilution conditions. The hydroxyl groups on c‐PHEMA were transferred into bromine groups by esterification with 2‐bromoisobutyryl bromide and then initiate the ATRP of styrene. The formed macrocyclic molecular brushes c‐PHEMA‐g‐PS were coupled with the TEMPO‐PEO to afford the target macrocyclic molecular brushes c‐PHEMA‐g‐(PS‐b‐PEO) by SET‐NRC, and the efficiency is as high as 80~85%. All of the intermediates and final product were characterized with 1H NMR, Fourier transform infrared (FTIR), and gel permeation chromatography in details © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
A new strategy for the one‐pot preparation of ABA‐type block‐graft copolymers via a combination of Cu‐catalyzed azide‐alkyne cycloaddition (CuAAC) “click” chemistry with atom transfer nitroxide radical coupling (ATNRC) reaction was reported. First, sequential ring‐opening polymerization of 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl (GTEMPO) and 1‐ethoxyethyl glycidyl ether provided a backbone with pendant TEMPO and ethoxyethyl‐protected hydroxyl groups, the hydroxyl groups could be recovered by hydrolysis and then esterified with 2‐bromoisobutyryl bromide, the bromide groups were converted into azide groups via treatment with NaN3. Subsequently, bromine‐containing poly(tert‐butyl acrylate) (PtBA‐Br) was synthesized by atom transfer radical polymerization. Alkyne‐containing polystyrene (PS‐alkyne) was prepared by capping polystyryl‐lithium with ethylene oxide and subsequent modification by propargyl bromide. Finally, the CuAAC and ATNRC reaction proceeded simultaneously between backbone and PtBA‐Br, PS‐alkyne. The effects of catalyst systems on one‐pot reaction were discussed. The block‐graft copolymers and intermediates were characterized by size‐exclusion chromatography, 1H NMR, and FT‐IR in detail. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
The star graft copolymers composed of hyperbranched polyglycerol (HPG) as core and well defined asymmetric mixed “V‐shaped” identical polystyrene (PS) and poly(tert‐butyl acrylate) as side chains were synthesized via the “click” chemistry. The V‐shaped side chain bearing a “clickable” alkyne group at the conjunction point of two blocks was first prepared through the combination of anionic polymerization of styrene (St) and atom transfer radical polymerization of tert‐butyl acrylate (tBA) monomer, and then “click” chemistry was conducted between the alkyne groups on the side chains and azide groups on HPG core. The obtained star graft copolymers and intermediates were characterized by gel permeation chromatography (GPC), GPC equipped with a multiangle laser‐light scattering detector (GPC‐MALLS), nuclear magnetic resonance spectroscopy and fourier transform infrared. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1308–1316, 2009  相似文献   

15.
Atom transfer radical copolymerization of Styrene (St) and N‐cyclohexylmaleimide (NCMI) with the CuBr/bipyridine catalyst in anisole, initiated by 1‐phenylethyl bromide (1‐PEBr) or tetra‐(bromomethyl)benzene (TBMB), afforded well‐defined copolymers with predetermined molecular weights and low polydispersities, Mw/Mn < 1.5. The influences of several factors, such as temperature, solvent, and monomer ratio, on the copolymerization with the CuBr/bpy catalyst system were subsequently investigated. The apparent enthalpy of activation for the overall copolymerization was measured to be 28.2 kJ/mol. The monomer reactivity ratios were evaluated to be rNCMI = 0.046 and rSt = 0.127. Using TBMB as the initiator produced four‐armed star copolymer. The copolymerization of styrene and NCMI with TBMB/CuBr/bpy in PhOCH3 at 110 °C was found to provide good control of molecular weights and polydispersities and the similar copolymerization in cyclohexanone displayed poor control. The glass transition temperature of the resultant copolymer increases with increasing fNCMI, which indicates that the heat resistance of the copolymer has been improved by increasing NCMI. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1203–1209, 2000  相似文献   

16.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

17.
A series of novel crosslinked copolymers of bismaleimide (BMI) and polyurethanes (PU) were prepared by direct copolymerization of BMI monomer and urethane-modified bismaleimide (UBMI). The copolymers were characterized by FT-IR and solid state 13C-NMR. The reaction rate of the BMI monomer can be significantly increased by copolymerization with UBMI. The crosslinked copolymers show good mechanical properties and high thermal stability. Studies on glass transition temperatures and dynamic mechanical properties indicate that the copolymer is a homogeneous system as the polyester-type PU employed. The transmission electron microscopy (TEM) of the copolymer illustrated a one-phase structure of the cured resins when the polyester-type PU was incorporated. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Biodegradable and biocompatible PCL‐g‐PEG amphiphilic graft copolymers were prepared by combination of ROP and “click” chemistry via “graft onto” method under mild conditions. First, chloro‐functionalized poly(ε‐caprolactone) (PCL‐Cl) was synthesized by the ring‐opening copolymerization of ε‐caprolactone (CL) and α‐chloro‐ε‐caprolactone (CCL) employing scandium triflate as high‐efficient catalyst with near 100% monomer conversion. Second, the chloro groups of PCL‐Cl were quantitatively converted into azide form by NaN3. Finally, copper(I)‐catalyzed cycloaddition reaction was carried out between azide‐functionalized PCL (PCL‐N3) and alkyne‐terminated poly(ethylene glycol) (A‐PEG) to give PCL‐g‐PEG amphiphilic graft copolymers. The composition and the graft architecture of the copolymers were characterized by 1H NMR, FTIR, and GPC analyses. These amphiphilic graft copolymers could self‐assemble into sphere‐like aggregates in aqueous solution with diverse diameters, which decreased with the increasing of grafting density. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The first application of atom transfer radical “bulk” polymerization (ATRBP) in molecular imprinting is described, which provides molecularly imprinted polymers (MIPs) with obvious imprinting effects towards the template, very fast binding kinetics, and an appreciable selectivity over structurally related compounds. In comparison with the MIP prepared via the normally used traditional “bulk” free radical polymerization (BFRP), the MIPs obtained via ATRBP showed somewhat lower binding capacities and apparent maximum numbers Nmax for high‐affinity sites as well as quite similar binding association constants Ka for high‐affinity sites and high‐affinity site densities, in contrast with the previous reports (e.g., nitroxide/iniferter‐mediated “bulk” polymerization provided MIPs with improved properties). This is tentatively ascribed to the occurrence of rather fast gelation process in ATRBP, which greatly restricted the mobility of the chemical species, leading to a heavily interrupted equilibrium between dormant species and active radicals and heterogeneous polymer networks. In addition, the general applicability of ATRBP was also confirmed by preparing MIPs for different templates. This work clearly demonstrates that applying controlled radical polymerizations (CRPs) in molecular imprinting not always benefits the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 532–541, 2010  相似文献   

20.
Well‐defined sulfonated polystyrene and block copolymers with n‐butyl acrylate (nBA) were synthesized by CuBr catalyzed living radical polymerization. Neopentyl p‐styrene sulfonate (NSS) was polymerized with ethyl‐2‐bromopropionate initiator and CuBr catalyst with N,N,N′,N′‐pentamethylethyleneamine to give poly(NSS) (PNSS) with a narrow molecular weight distribution (MWD < 1.12). PNSS was then acidified by thermolysis resulting in a polystyrene backbone with 100% sulfonic acid groups. Random copolymers of NSS and styrene with various composition ratios were also synthesized by copolymerization of NSS and styrene with different feed ratios (MWD < 1.11). Well defined block copolymers with nBA were synthesized by sequential polymerization of NSS from a poly(n‐butyl acrylate) (PnBA) precursor using CuBr catalyzed living radical polymerization (MWD < 1.29). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5991–5998, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号