首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
BF3·OEt2-initiated polymerizations of 2-methylene-1,3-dioxepane gave polymers composed of both ring-retained and ring-opened structures. The ring-opening content increased with an increase in polymerization temperature. Poly(4,7-dimethyl-2-methylene-1,3-dioxepane) propagated slower during BF3·OEt2-initiated polymerization and had a lower ring-opened content than poly(2-methylene-1,3-dioxepane). The type of acid initiator used also affected the amount of ring opening observed. Stronger acids gave less ring opening. Attempted BF3·OEt2-initiated copolymerizations of these seven-membered ring cyclic ketene acetals with isobutyl vinyl ether at room temperature resulted in formation of the two homopolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 873–881, 1998  相似文献   

2.
Stable polymers were made by the cationically initiated 1,2-polymerization of cyclic ketene acetals employing heterogeneous, activated carbon-supported sulfuric acid catalysts. A methodology has been established for the preparation of the carbon black of different acidic strengths. By adjusting either the acid strength or the amount of carbon black used, cyclic ketene acetals with different activities can be polymerized efficiently to form stable high molecular weight polymers. This methodology will be a useful tool for polymerization, copolymerization, and studies of the relative reactivities of the cyclic ketene acetals. The polymer structures were determined by FTIR, 13C-NMR, and 1H-NMR studies. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Carbon black-supported sulfuric acid or BF3·Et2O-initiated polymerizations of 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (1), 2-methylene-4-phenyl-1,3-dioxolane (2), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (3) were performed. 1,2-Vinyl addition homopolymers of 1–3 were produced using carbon black-supported H2SO4 initiation at temperatures from 0°C to 60°C whereas both ring-opened and 1,2-vinyl structural units were present in the polymers using BF3·Et2O as an initiator. Cationic polymerizations of 2-methylene-1,3-dithiolane (4) and copolymerization of 4 with 2-methylene-4-(t-butyl)-1,3-dioxolane (5) were initiated with either carbon black-sulfuric acid or BF3·Et2O. Insoluble 1,2-vinyl addition homopolymers of 4 were obtained upon initiation with the supported acid or BF3·Et2O. A soluble copolymer of 2-methylene-1,3-dithiolane (4) and 4-(t-butyl)-2-methylene-1,3-dioxolane (5) was obtained upon BF3·Et2O initiation. This copolymer is composed of three structural units: a ring-opened dithioester unit, a 1,2-vinyl-polymerized 1,3-dithiolane unit, and a 1,2-vinyl polymerized 4-(t-butyl)-1,3-dioxolane unit. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2823–2840, 1999  相似文献   

4.
Three unsubstituted cyclic ketene acetals (CKAs), 2-methylene-1,3-dioxolane, 1a , 2-methylene-1,3-dioxane, 2a , and 2-methylene-1,3-dioxepane, 3a , undergo exclusive 1,2-addition polymerization at low temperatures, and only poly(CKAs) are obtained. At higher temperatures, ring-opening polymerization (ROP) can be dominant, and polymers with a mixture of ester units and cyclic ketal units are obtained. When the temperature is raised closer to the ceiling temperature (Tc) of the 1,2-addition propagation reaction, 1,2-addition polymerization becomes reversible and ring-opened units are introduced to the polymer. The ceiling temperature of 1,2-addition polymerization varies with the ring size of the CKAs (lowest for 3a , highest for 2a ). At temperatures below 138°C, 2-methylene-1,3-dioxane, 2a , underwent 1,2-addition polymerization. Insoluble poly(2-methylene-1,3-dioxane) 100% 1,2-addition was obtained. At above 150°C, a soluble polymer was obtained containing a mixture of ring-opened ester units and 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxolane, 1a , polymerized only by the 1,2-addition route at temperatures below 30°C. At 67–80°C, an insoluble polymer was obtained, which contained mostly 1,2-addition units but small amounts of ester units were detected. At 133°C, a soluble polymer was obtained containing a substantial fraction of ring-opened ester units together with 1,2-addition cyclic ketal units. 2-Methylene-1,3-dioxepane, 3a , underwent partial ROP even at 20°C to give a soluble polymer containing ring-opened ester units and 1,2-addition cyclic ketal units. At −20°C, 3a gave an insoluble polymer with 1,2-addition units exclusively. Several catalysts were able to initiate the ROP of 1a, 2a , and 3a , including RuCl2(PPh3)3, BF3, TiCl4, H2SO4, H2SO4 supported on carbon, (CH3)2CHCOOH, and CH3COOH. The initiation by Lewis acids or protonic acids probably occurs through an initial protonation. The propagation step of the ROP proceeds via an SN2 mechanism. The chain transfer and termination rates become faster at high temperatures, and this may be the primary reason for the low molecular weights (Mn ≤ 103) observed for all ring-opening polymers. The effects of temperature, monomer and initiator concentration, water content, and polymerization time on the polymer structure have been investigated during the Ru(PPh3)3Cl2-initiated polymerization of 2a . High monomer concentrations ([M]/[ln]) increase the molecular weight and decreased the amount of ring-opening. Higher initiator concentrations (Ru(PPh3)3Cl2) and longer reaction times increase molecular weight in high temperature reactions. Successful copolymerization of 2a with hexamethylcyclotrisiloxane was initiated by BF3OEt2. The copolymer obtained displayed a broad molecular weight distribution; M̄n = 6,490, M̄w = 15,100, M̄z = 44,900. This polymer had about 47 mol % of ( Me2SiO ) units, 35 mol % of ring-opened units, and 18 mol % 1,2-addition units of 2a . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3655–3671, 1997  相似文献   

5.
Stable polymers were made by the cationic 1,2-polymerization of cyclic ketene acetals initiated by acid-washed glassware or acid-washed glass beads. Among several reactions possible for the very reactive cyclic ketene acetals, only the corresponding acetals of polyketene were formed. These structures were demonstrated by FTIR, 1H-NMR, and 13C-NMR analyses. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Pure 1,2-addition polymers, poly(2-methylene-1,3-dioxolane), 1b , poly(2-methylene-1,3-dioxane), 2b , and poly(2-methylene-5,5-dimethyl-1,3-dioxane), 3b , were prepared using the cationic initiators H2SO4, TiCl4, BF3, and also Ru(PPh3)3Cl2. Small ester carbonyl bands in the IR spectra of 1b and 2b were observed when the polymerizations were performed at 80°C ( 1b ) and both 67 and 138°C ( 2b ) using Ru(PPh3)3Cl2. The poly(cyclic ketene acetals) were stable if they were not exposed to acid and water. They were quite thermally stable and did not decompose until 290°C ( 1b ), 240°C ( 2b ), and 294°C ( 3b ). Different chemical shifts for axial and equatorial H and CH3 on the ketal rings were found in the 1H NMR spectrum of 3b at room temperature. High molecular weight 3b (M̄n = 8.68 × 104, M̄w = 1.31 × 105, M̄z = 1.57 × 105) was obtained upon cationic initiation by H2SO4. Poly(2-methylene-1,3-dioxane), 2b , underwent partial hydrolysis when Ru(PPh3)3Cl2 and water were present in the polymer. The hydrolyzed products were 1,3-propanediol and a polymer containing both poly(2-methylene-1,3-dioxane) and polyketene units. The percentages of these two units in the hydrolyzed polymer were about 32% polyketene and 68% poly(2-methylene-1,3-dioxane). No crosslinked or aromatic structures were observed in the hydrolyzed products. The molecular weight of hydrolyzed polymer was M̄n = 5740, M̄w = 7260, and M̄z = 9060. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3707–3716, 1997  相似文献   

7.
Copolymers of the cyclic ketene acetals, 2-methylene-5,5-dimethyl-1,3-dioxane, 3 , (M1) with 2-methylene-1,3-dioxolane, 4 , (M2) or 2-methylene-1,3-dioxane, 5 , (M2), were synthesized by cationic copolymerization. An experimental method was designed to study the reactivity of these very reactive and extremely acid sensitive cyclic ketene acetal monomers. The reactivity ratios, calculated using a computer program based on a nonlinear minimization algorithm, were r1 = 6.36 and r2 = 1.25 for the copolymerization of 3 with 4 , and r1 = 1.56 and r2 = 1.42 for the copolymerization of 3 with 5. FTIR and 1H-NMR spectra when combined with the values of r1 and r2 showed that these copolymers were formed by a cationic 1,2-polymerization (ring-retained) route. Furthermore the tendency existed to form very short blocks of M1 or M2 within the copolymers. Cationic copolymerization of cyclic ketene acetals have the potential to be used for synthesis of novel polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
9.
10.
Photoinitiated polymerization of 4-methylene-2-phenyl-1,3-dioxolane ( 1 ) was carried out using either tris (4-methylphenyl) sulfonium hexafluoroantimonate or 4-decyloxyphenyl phenyliodonium hexafluoroantimonate as initiators. 1H-NMR analyses confirmed exclusive ring-opening while DSC and SEC were used to determine the glass transition temperatures (Tgs) and molecular weights, respectively. Photoinitiated cationic copolymerizations of 1 were investigated with several acyclic and cyclic monomers. Copolymerization of 1 with vinyl ethers and a spiroorthoester resulted in copolymers whose thermal properties were dependent on comonomer ratios. Copolymers of 1 and dihydrofuran or dihydropyran afforded soluble polymers with Tgs significantly higher than the homopolymer of 1 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2207–2219, 1997  相似文献   

11.
Cationic copolymerizations of 4-methyl-2-methylene-1,3-dioxane, 2 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4,4,6-trimethyl-2-methylene-1,3-dioxane, 3 (M1), with 2-methylene-1,3-dioxane, 1 (M2); of 4-methyl-2-methylene-1,3-dioxolane, 5 (M1), with 2-methylene-1,3-dioxolane, 4 (M2); and of 4,5-dimethyl-2-methylene-1,3-dioxolane, 6 (M1), with 2-methylene-1,3-dioxolane, 4 (M2) were conducted. The reactivity ratios for these four types of copolymerizations were r1 = 1.73 and r2 = 0.846; r1 = 2.26 and r2 = 0.310; r1 = 1.28 and r2 = 0.825; r1 = 2.23 and r2 = 0.515, respectively. The relative reactivities of these monomers towards cationic polymerization are: 3 > 2 > 1; and 6 > 5 > 4. With both five- and six-membered ring cyclic ketene acetals, the reactivity increased with increasing methyl substitution on the ring. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 861–871, 1998  相似文献   

12.
Cationic polymerization of 1,3-dioxepane (DOP) initiated by triflic acid was carried out in the presence of 2,2-bis(hydroxymethyl)butanol (BHMB). The structure and molecular weight of the products were characterized by GPC and NMR spectra. The results showed that molecular weight of the polyacetal obtained could be controlled by the initial mole ratio of DOP/BHMB. GPC showed that as the mole ratio of BHMB/DOP increased, the content of cyclic oligomers also increased. Proton, 13C and 2D HMQC-fg NMR demonstrated that no hydroxymethyl group of BHMB appeared as an end group. It was also illustrated by proton NMR that some BHMB units existed in cyclic oligomers. The mechanism of formation of cyclic oligomers was discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2899–2903, 1998  相似文献   

13.
The polymerization of o-(1,3-dioxolan-2-yl)phenyl ethyl fumarate (DOPEF) initiated with dimethyl 2,2′-azobisiso-butyrate (MAIB) was studied kinetically in benzene. The polymerization rate (Rp) at 60°C was given by Rp = k [MAIB]0.76 [DOPEF]0.71. The overall activation energy of polymerization was calculated to be 98.3 kJ/mol. The number-average molecular weight of resulting poly(DOPEF) was in the range of 1000–3100. 1H- and 13C-NMR spectra of resulting polymers revealed that the radical polymerization of DOPEF proceeds in a complicated manner involving vinyl addition, intramolecular hydrogen abstraction, and further ring opening of the cyclic acetal at higher temperatures. From the copolymerization of DOPEF (M1) and styrene (St) (M2) at 60°C, the monomer reactivity ratios were obtained to be r1 = 0.02 and r2 = 0.20, the values of which are similar to those of the copolymerization of ethyl o-formylphenyl fumarate and St. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 563–572, 1998  相似文献   

14.
4-Methylene-4H-1,3-benzodioxin-2-one (MBDOON), an α-substituted cyclic styrene derivative, was synthesized and polymerized readily with 2,2′-azobis(isobutyronitrile) (AIBN) as an initiator in solution. The kinetics of the MBDOON homopolymerization with AIBN was investigated in N-methyl-2-pyrrolidone (NMP). The rate of polymerization, Rp, can be expressed by Rp ? k[AIBN]0.52[MBDOON]1.1 and the overall activation energy has been calcualted to be 75.7 kJ/mol. Monomer reactivity ratios in copolymerization of MBDOON (M2) with styrene (M1) are r1 = 0.31 and r2 = 3.20, from which Q and e values of MBDOON can be calculated as 3.0 and ?0.7, respectively. Ring-substituted MBDOON monomers such as 6-chloro, 6-methyl, and 7-methoxy derivatives were synthesized and polymerized with AIBN. The 6-substituted MBDOON's readily underwent radical polymerization while the 7-methoxy-MBDOON was slower to polymerize. Poly(MBDOON) is predominantly heterotactic. (rr = 35, mr = 46, and mm = 19%). The polymer releases carbon dioxide at about 200°C and is converted with some depolymerization to poly[(o-hydroxyphenyl)acetylene]. The thermolysis temperature is very much affected by the ring substituent. The onset of carbon dioxide liberation was observed at 140°C in the case of the 7-methoxyl derivative while the 6-substituents had a smaller effect on the decarboxylation temperature. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Perfluoro-2-methylene-1,3-dioxolane (III) was synthesized and polymerized with an initiator, perfluoro dibenzoyl peroxide, and a white solid product III-P was quantitatively isolated. The polymer was insoluble in organic solvents including fluorinated solvents such as Fluorinert FC 75 and hexafluorobenzene, but dissolved in hexafluorobenzene by heating at around 140 °C in a sealed ampoule. The X-ray measurement showed that III-P was semi-crystalline and melted at 230 °C. The IR spectrum of III-P indicated that the polymer obtained did not show carbonyl peak and it was the vinyl addition product. When the solid product was heated above the melting temperature and pressed under 100-200 kg/cm2, we obtained an amorphous and flexible film, which is transparent from the UV region to the near IR region. The glass transition temperature was 110 °C and refractive indexes were 1.3443, 1.3434 and 1.3373 at 633, 839 and 1544 nm, respectively. The film did not degrade in concentrated sulfuric acid and aqueous sodium hydroxide solutions even heated at 80-90 °C for 2 days. The film was thermally stable and began to decompose at 300 °C under air atmosphere.  相似文献   

16.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号