首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular relaxation behavior in terms of the α, β, and γ transitions of miscible PS/PPO blends has been studied by means of DMTA and preliminary work has been carried out using DSC. From DSC and DMTA (by tan δ), the observed α relaxation (Tα or Tg) of PS, PPO, and the blends, which are intermediate between the constituents, are in good agreement with earlier reports by others. In addition, the β transition (Tβ) of PS at 0.03 Hz and 1 Hz is observed at −30 and 20°C, respectively, while the γ relaxation (Tγ) is not observed at either frequency. The Tβ of PPO is 30°C at 0.03 Hz and is not observed at 1 Hz, while the Tγ is −85°C at 0.03 Hz and −70°C at 1 Hz. On the other hand, blend composition-independent β or γ relaxation observed in the blends may be a consequence of the absence of intra- or intermolecular interaction between the constituents at low temperature. Thus it is suggested that at low temperature, the β relaxation of PS be influenced solely by the local motion of the phenylene ring, and that the β or γ relaxation of PPO be predominated by the local cooperative motions of several monomer units or the rotational motion of the methyl group in PPO. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1981–1986, 1998  相似文献   

2.
The following system of nomenclature for the transitions and relaxations in polycarbonate has been proposed: α = Tg = 150, β = 70, γ = ?100, and δ = ?220°C (frequency range of 10–50 Hz). The three component peaks of the γ relaxation are denoted by γ1, γ2, and γ3 relaxations correspond to phenylene, coupled phenylene-carbonate, and carbonate motions, respectively. Dynamic mechanical analysis of poly(bisphenol-A carbonate) using the DuPont 981–990 DMA system shows that the magnitude of the β relaxation depends upon the thermal history of the polycarbonate; annealing greatly reduces the intensity of the β relaxation. A relaxation map constructed for the β relaxation gives an activation energy of 46 kcal/mol. Exposure of polycarbonate to methylene chloride vapor for various times shows that after an induction period of about 5 min the intensity of the γ3 relaxation at ?78°C decreases whereas the intensity of the γ1 relaxation of ?30°C is unaffected and the ratio E″(γ1)/E″(γ3) increases linearly with the square root of time. This has been ascribed to the interaction of methylene chloride on the carbonate group in polycarbonate. Thermal crystallization of polycarbonate does not affect the positions of the γ relaxation and the glass transition peaks, but merely reduces their intensity. The glass transition peak intensity falls off sharply in comparison to the γ relaxation intensity. Both the γ3 and γ1 peaks in polycarbonate have been observed simultaneously for the first time by dynamic mechanical analysis. Impact strength measurements show that methylene chloride treatment of polycarbonate results in a change in mode of failure from ductile to brittle with a resultant 40-fold reduction in impact energy for fracture. Thermally crystallized polycarbonate exhibits brittle fracture with very low force and energy at break.  相似文献   

3.
Poly(OxyMethylene) (POM) and its miscible blends were studied by multifrequency A.C. dielectric and thermally stimulated currents (TSC). The blends contained small amounts of either poly(vinyl phenol), which is a high glass transition (Tg) diluent, or a styrene-co-hydroxy styrene oligomeric low Tg diluent. The variation of the 10°C “β” transition with blend composition proves that it is the glass transition, and that the −70°C “γ” transition is a local motion. Dielectrically the β transition is very weak in pure POM even in fast-quenched samples. The TSC thermal sampling method also detected two cooperative transitions, γ and β, in POM and its blends, and was used to directly resolve the γ transition into low and high activation energy components. If one considers the contribution of exclusion of the diluents from the crystal lamellae, it is shown that the blends behave like typical amorphous blends as a function of concentration. The effect of crystals on amorphous motions is examined in light of comparison with van Krevelen's37 predictions of an “amorphous” Tg, and the transitions in POM are contrasted with those for other semicrystalline polymers. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2121–2132, 1997  相似文献   

4.
New thermally stimulated depolarization currents (TSDC) results on LLD polyethylene functionalized with diethylmaleate polar groups are precisely computer fitted with the direct signal analysis technique. It is shown that the TSDC spectrum consists, with increasing temperatures, of a sub-γ peak, a sharp γ peak, and a β and an α relaxation. The first peak is analyzed in terms of Arrhenius relaxation times, whereas the γ and β transitions could only be fitted by using Vogel-Fulcher temperature dependence for the relaxation times. The best value for To obtained from both fittings is 69.7 K. This is a quantitative proof for the identification of the γ transition as one of the dielectric manifestations of the glass-rubber transition for polyethylenes, Tg = 136.5 K, which has been discussed extensively in the literature. The β relaxation, Tgβ = 237 K, has also the expected characteristic of a glass transition; the existence of two Tgs in polyethylene could explain our results. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Aromatic polyamides based on poly(m‐xylylene adipamide) (MXD‐based polyamides) and poly(hexamethylene isophthalamide) (HMD‐based polyamides) were examined. Insight into the excellent gas‐barrier properties was obtained by the characterization of the effect of water sorption on the thermal transitions, density, refractive index, free‐volume hole size, and oxygen‐transport properties. Reversing the carbonyl position with respect to the amide nitrogen substantially lowered the oxygen permeability of MXD‐based polyamides in comparison with that of HMD‐based polyamides by facilitating hydrogen‐bond formation. The resulting restriction of conformational changes and segmental motions reduced diffusivity. The primary effect of water sorption was a decrease in the glass‐transition temperature (Tg) attributed to plasticization by bound water. No evidence was found to support the idea that sorbed water filled holes of free volume. When the polymer was in the glassy state, the drop in Tg accounted for hydration‐dependent changes in the density, refractive index, and free‐volume hole size. The correlation of the oxygen solubility with Tg and density confirmed the concept of oxygen sorption as filling holes of excess free volume. In some cases, water sorption produced a glass‐to‐rubber transition. The onset of rubbery behavior was associated with a minimum in the oxygen permeability. The glass‐to‐rubber transition also facilitated the crystallization of MXD‐based polymers, which complicated the interpretation of oxygen‐transport behavior at higher relative humidity. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1365–1381, 2005  相似文献   

6.
Broadband dielectric spectroscopy was used to study the segmental (α) and secondary (β) relaxations in hydrogen‐bonded poly(4‐vinylphenol)/poly(methyl methacrylate) (PVPh/PMMA) blends with PVPh concentrations of 20–80% and at temperatures from ?30 to approximately glass‐transition temperature (Tg) + 80 °C. Miscible blends were obtained by solution casting from methyl ethyl ketone solution, as confirmed by single differential scanning calorimetry Tg and single segmental relaxation process for each blend. The β relaxation of PMMA maintains similar characteristics in blends with PVPh, compared with neat PMMA. Its relaxation time and activation energy are nearly the same in all blends. Furthermore, the dielectric relaxation strength of PMMA β process in the blends is proportional to the concentration of PMMA, suggesting that blending and intermolecular hydrogen bonding do not modify the local intramolecular motion. The α process, however, represents the segmental motions of both components and becomes slower with increasing PVPh concentration because of the higher Tg. This leads to well‐defined α and β relaxations in the blends above the corresponding Tg, which cannot be reliably resolved in neat PMMA without ambiguous curve deconvolution. The PMMA β process still follows an Arrhenius temperature dependence above Tg, but with an activation energy larger than that observed below Tg because of increased relaxation amplitude. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3405–3415, 2004  相似文献   

7.
The mechanical and dielectric relaxation of a set of aromatic-aliphatic polyamides containing ether linkages have been examined as a function of temperature (−140 to 190°C) and frequency (3 to 106 Hz). The polymers differ in the orientation (meta and para) of the aromatic rings, in the length of the aliphatic chain, and in the number of ether linkages per repeating unit. Dynamic mechanical experiments showed three main relaxation peaks related to the glass transition temperature of the polymers (α relaxation), the subglass relaxations associated to the absorbed water molecules (β) and to the motion of the aliphatic moieties (γ). Dielectric experiments showed two subglass relaxation processes (β and γ) that correlates with the mechanical β and γ relaxations, and a conduction process (σ) above 50°C that masks the relaxation associated to the glass transition. A molecular interpretation is attempted to explain the position and intensity of the relaxation, studying the influence of the proportion of para- or meta- oriented phenylene rings, the presence of ether linkages and the length of the aliphatic chain. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 457–468, 1997  相似文献   

8.
The molecular dynamics of amorphous and liquid-crystalline (LC) side-chain polycarbonates was studied by dielectric spectroscopy at frequencies from 10−2 to 106 Hz and at temperatures from −160 to 180°C. ‘Model’ compounds containing no mesogenic side-groups showed two relaxations, which originate from the carbonate group (α, βm-relaxation). By contrast, in LC-polycarbonates bearing a mesogenic nitrostilbene side group around and above the glass transition temperature Tg up to three relaxation modes were distinguished (α-, λ1-, λ2-process); below Tg four secondary relaxations (γ-, βm-, βs-, βsc-relaxation) were observed. The γ-relaxation was found only in compounds possessing an aliphatic spacer linked to the backbone by an ether bond. Apart from βm-, two additional β-processes were identified as relaxations associated with the mesogenic unit in the glassy (βs) or in the crystalline state (βsc).  相似文献   

9.
The viscoelastic behavior of phosphonate derivatives of phosphonylated low-density polyethylene (LDPE) was studied by dynamic mechanical techniques. The polymers investigated contained from 0.2 to 9.1 phosphonate groups per 100 carbon atoms and included the dimethyl phosphonate derivative and two derivatives for which the phosphonate ester group was an oligomer of poly(ethylene oxide) (PEO). The temperature dependences of the storage and loss moduli of the dimethyl phosphonate derivatives were qualitatively similar to those of LDPE. At low phosphonate concentrations, the α, β, and γ dispersion regions characteristic of PE were observed, while at concentrations greater than 0.5 pendent groups per 100 carbons atoms, only the β and α relaxations could be discerned. At low degrees of substitution, the temperature of the β relaxation Tβ decreased from that of PE, but above a degree of substitution of 0.1, Tβ increased. This behavior was attributed to the competing influences of steric effects which tend to decrease Tβ and dipolar interactions between the phosphonate groups which increase Tβ. For the phosphonate containing PEO, a new dispersion region designated as the β′ relaxation was observed as a low-temperature shoulder of the β relaxation. The temperature of the β′ loss was consistent with Tg(U) of the PEO oligomers as determined by differential scanning calorimetry, and it is suggested that the β′-loss process results from the relaxation of PEO domains which constitute a discrete phase within the PE matrix.  相似文献   

10.
In this work, the characteristics of the β and γ mechanical relaxations, i.e., temperature and relative intensity, of a series of metallocene iPP samples (MPP) are analysed. The hypothesis that the temperature and the intensity of the glass transition (β relaxation) and local sub-Tg motions (γ relaxation) are related mainly to chain parameters and morphology has been corroborated. On the one hand, it has been found a critical average isotactic length (n1) around 30 propylene units, under which the β and γ dynamics are promoted with respect to the α relaxation. On the other hand, it is apparent that the features which determine the degree of constraint within the inter-lamellar region, i.e., the fraction of low-Tm crystals, drive the relative intensities of the α, β and γ relaxation processes.  相似文献   

11.
The dielectric permittivity and loss of Bisphenol-A-polycarbonate (PC) was measured over the frequency range 100 Hz to 200 kHz and temperature range 77–383 K. One sub-Tg relaxation peak is observed which rapidly broadens with a decrease in temperature. This is attributed to a progressive separation of the γ and β peaks, which at high temperatures are merged to form one peak of high strength. The strength of the sub-Tg relaxations decreases on physical aging of PC but is increased if the sample is quenched from a temperature above its Tg. Slowly cooled PC has a lower strength of its sub-Tg relaxation than a quenched specimen. The thermal history of PC affects the magnitude of its sub-Tg relaxation.  相似文献   

12.
The effect of moisture on the mechanical relaxation processes of semiaromatic semicrystalline polyamides synthesized by a long‐chain aliphatic diamine and terephthalic acid was investigated by dynamic viscoelastic analysis (DVA) and differential scanning calorimetry (DSC). Moreover, the implication of moisture with the amorphous and crystalline domains was also examined by temperature‐dependent wide‐angle X‐ray diffraction and Fourier transform infrared spectra. The characteristics of the relaxations such as α, β, γ, and the pronounced peak shoulder appeared at 25–100 °C in DVA tan δ curves were found to be strongly susceptible to the presence of moisture. With moisture evaporation, the peak shoulder of 25–100 °C and the β‐relaxation disappeared. The former is anticipated to originate from to the side group motion of hydrogen‐bonded water, whereas the later one is from the motions of the amide–water complex units. With the disappearance of the β‐relaxation, the γ‐relaxation appeared simultaneously in much lower temperatures and ultimately coupled with the δ‐relaxation. The γ‐relaxation is attributed to be associated with the molecular motion of the amide group and δ‐relaxation with for the motion of the methylene units. The existence of two types of water was identified in the polymer, namely, tightly bound and loosely bound. The tightly bound water is believed to be directly connected by hydrogen bonding with the strong polar groups and the loosely bound water weakly links with those connected water making hydrogen bridges. The moisture acts as a plasticizer in the polymer matrix, which causes quite a large depression in its glass transition temperature (Tg). WAXD and FTIR studies corroborated the existence of water solely in amorphous regions, i.e., no rapport of water with the crystalline parts. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2878–2891, 2003  相似文献   

13.
The sub-Tg relaxations of bisphenol-A–based thermosets cured with diaminodiphenyl methane and diaminodiphenyl sulfone have been studied by dielectric measurements over the frequency range 12 Hz to 200 kHz from their ungelled or “least” cured states to their fully cured states. Both thermosets show two relaxation processes, γ and β, as the temperature is increased toward their Tgs. In the ungelled states, the γ process is more prominent than the β process. As curing proceeds, the strength of the γ process decreases and reaches a limiting value, while that of the β process initially increases, reaches a maximum value, and then decreases. An increase in the chain iength and the number of crosslinks increases the number of -OH dipoles and/or degree of their motions in local regions of the network matrix. This is partly caused by the decreasing efficiency of segmental packing as the curing proceeds. The sub-Tg relaxations become increasingly more, separated from the α relaxation during curing. Physical aging causes a decrease in the strength of the β relaxation of the thermosets as a result of the collapse of loosely packed regions of low cross-linking density, and this decrease competes against an increase caused by further crosslinking during the “post-cure” process.  相似文献   

14.
The effects of temperature and pressure on the shift factor and the dielectric increment of the β relaxation process were measured for vulcanized chlorinated polyethylene. The isobaric and isochoric activation enthalpies, H*P and H*V, the activation volume V*, the pressure dependence of the glass–glass transition temperature, Tgβ/dP, and the apparent extinction temperature T were obtained. The pressure dependences of both V* and the dielectric increment would reach very small values near the liquid–glass transition temperature Tg, and the β process seems to be affected by the transition near Tg. The value of H*v/H*p for the β process is larger than that for the α process, and it is suggested that the molecular motions pertaining to the β process are more strongly restricted than those pertaining to the α process. The ratio T/T0, where T0 is the characteristic temperature in the Vogel–Fulcher–Tammann–Hesse equation for the α process, follows the empirical relation of Matsuoka and Ishida, Tgβ/Tg ~0.75. The value of dTgβ/dP estimated from Tg and T/T0 is consistent with the experimental value.  相似文献   

15.
In this work, three alipharomatic polyesters—poly(propylene terephthalate) (PPT), poly(propylene isophthalate) (PPI), and poly(propylene naphthalate) (PPN)—were prepared and studied with the aliphatic diol 1,3‐propanediol and the corresponding aromatic diacids. Their synthesis was performed by the two‐stage melt polycondensation method in a glass batch reactor. The thermal characterization of these polyesters was carried out with different thermal techniques such as simultaneous thermogravimetry/differential thermal analysis, thermomechanical analysis (TMA), and dynamic thermomechanical analysis. From the recorded values for the glass‐transition temperature (Tg) and melting temperature with all the aforementioned techniques, it could be said that they were in good agreement. According to the thermogravimetric results, PPT and PPI showed about the same thermal stability, whereas PPN seemed to be somewhere more thermostable. Remarkably, a transition existed immediately after Tg that was realized by the first derivative of TMA, and it was characterized as a midrange transition. For all polyesters, the average coefficient of linear thermal expansion was calculated with TMA. The secondary relaxations Tβ and Tγ, recorded with dynamic mechanical thermal analysis, were mainly affected by the kinds of monomers. Concerning the mechanical properties, PPN had the highest tensile strength at break, whereas PPT had the highest elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3998–4011, 2005  相似文献   

16.
Dimer acid‐based polyamides were synthesized by condensation polymerization in the absence and presence of monofunctional reactants. Acetic acid, oleic acid and propyl amine were used as monofunctional reactants. The influences of the equivalent percentage (E%) and type of monofunctional reactant on the physical properties of dimer acid‐based polyamides such as glass transition temperature (Tg), melting point (Tm), heat of fusion (ΔH), degree of polymerization (DP), number average molecular weight (Mn), and kinematic viscosity were investigated. The molecular weight and viscosity of dimer acid‐based polyamides decreased with the increase in equivalent percentage of monofunctional reactant. Differential scanning calorimetry (DSC) studies showed that acetic acid and propyl amine had higher effect on the thermal properties of polyamides than that of oleic acid. In the case of polyamides prepared in the presence of acetic acid, the values of Tg, Tm, and ΔH of the polyamides increased remarkably with the increase in acetic acid content. On the contrary, propyl amine had a decreasing effect on the values of Tg, Tm, and ΔH of the polyamides. Incorporation of oleic acid into the polymer structure had no significant effect on the values of Tg and Tm of the dimer acid‐based polyamides. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Micromechanical string resonators are used as a highly sensitive tool for the detection of glass transition (Tg or α relaxation) and sub‐Tg (β relaxation) temperatures of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The characterization technique allows for a fast detection of mechanical relaxations of polymers with only few nanograms of sample in a quasi‐static condition. The polymers are spray coated on one side of silicon nitride (SiN) microstrings. These are pre‐stressed suspended structures clamped on both ends to a silicon frame. The resonance frequency of the microstrings is then monitored as a function of increasing temperature. α and β relaxations in the polymer affect the net static tensile stress of the microstring and result in measureable local frequency slope maxima. Tg of PS and PMMA is detected at 91 ±2°C and 114 ±2°C, respectively. The results match well with the glass transition values of 93.6°C and 114.5°C obtained from differential scanning calorimetry of PS and PMMA, respectively. The β relaxation temperatures are detected at 30 ± 2°C and 33 ± 2°C for PS and PMMA which is in accordance with values reported in literature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1035–1039  相似文献   

18.

This study is based on the assumption that the change in the texture of hazelnut, induced by water sorption or desorption, can be derived from the glass transition. No previous study has investigated the glass transition properties of hazelnuts. This study aimed to investigate the effect of water content on the glass transition and textural properties of a roasted hazelnut product. Water content of the sample was adjusted in various relative humidity conditions, and the mechanical glass transition temperature Tg was investigated using thermal rheological analysis (TRA), a type of thermomechanical analysis. The TRA curve exhibited a clear force drop induced by the glass transition, and mechanical Tg of the samples was determined. Water plasticizing effect caused mechanical Tg to decrease as the water content increased. The reduction in Tg was analyzed using the Gordon–Taylor equation and linear equation, and the critical water contents (water content at mechanical Tg?=?25 °C) were obtained. The fracturing properties of the hazelnut changed from brittle to ductile at the critical water contents. This suggested that the change in the texture of hazelnut can be characterized by the glass transition.

  相似文献   

19.
Polyamides were prepared from linear, aliphatic dicarboxylic acids of six to twelve carbon atoms with 1,4-cyclohexanebis(methylamine), 1,4-cyclohexanebis (ethylamine), p-xylylenediamine, and p-phenylenebis(ethylamine). Melting points, glass transition temperatures, densities, and moisture regains were compared for the polymers to determine the relative effect of the cyclohexylene and phenylene linkages. While polyamides containing the trans-cyclohexylene group possessed higher glass transition temperatures than their aromatic counterparts, melting behavior was not as consistent. The odd-even rule, which states that polyamides with an even number of methylene linkages between the ring and the functional group melt higher than those with an odd number of such linkages, was violated in the cycloaliphatic systems. The Tg of ring-containing polyamide fibers was not dependent solely upon ring concentration, but was influenced by the molecular fit of the ringed intermediate in the polymer chains. Molecular fit appears to affect the Tg and melting point of alicyclic polyamides to a greater extent than the aromatic analogs. Differences in Tg, both within and among the polymer series, was not explained by either density or the degree of crystallinity.  相似文献   

20.
Different semiaromatic polyamides (SAPA) have been synthesized by step‐growth polymerization of an aliphatic diamine, M (the 2‐methyl 1,5‐pentanediamine), and isophthalic acid, I, or terephthalic acid, T, or mixtures of these two diacids. The influence of the relative amount of randomly distributed MT units on the viscoelastic properties of the materials was investigated. It was shown that the glass transition Tg, as deduced from DSC thermograms, and the relevant mechanical relaxation Tα raise when the content of MT units increases. In contrast, the broad low‐temperature secondary relaxation, called γ, does not markedly depend on the MT content. Samples systematically studied in the absence of any moisture did not exhibit the intermediate‐temperature secondary relaxation, called β, which is characteristic of the wet polyamides. The study of the plastic behavior was focused on the samples MI and I5, which are strictly amorphous, and contain 0% and 50 mol % of MT units, respectively. Mechanical experiments were carried out in both the compression and traction modes, at temperatures ranging from −80°C to Tg. Analysis of the compression data was based on the inspection of the temperature dependence of elastic modulus, E(T), yield stress, ςy, plastic flow stress, ςpf, and strain softening ςy − ςpf. Whereas the plots of ςy as a function of temperature, T, reveal some differences between MI and I5 behavior, a unique master curve was obtained by plotting ςy/E(T) vs. TTg, which means that the plastic behavior of these materials is controlled by their chain packing in the glassy state. The strain softening profile of MI and I5 is similar to that already reported in the case of brittle vinyl polymers. This observation is consistent with the traction data, which give evidence for the occurrence of the tensile yielding of MI and I5 at temperatures rather close to Tg. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1131–1139, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号