首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sedimentation of an unperturbed polymer chain in dilute solution is reformulated by using Burgers' method, in which the no-slip boundary condition on the surface of each chain element is taken into account approximately. It is shown that the forcevelocity proportionality relation employed so far as the basis of theoretical developments in polymer hydrodynamics can be justified as a first approximation to the no-slip condition. The derived expression for the translational friction coefficient ft is a complex function of n and a/b, where n is the number of chain elements in a single molecule and a/b is the ratio of the Stokes radius of a chain element to the effective bond length. Three special cases corresponding mathematically to b = ∞ (no hydrodynamic interaction), a ? b (Kirkwood-Riseman theory), and b = 2a (touching-sphere model) are examined in detail. Finally, it is shown that when a/b = 0.2360, our ft varies linearly with n1/2 over the entire range of n.  相似文献   

2.
Quasi‐elastic light scattering spectroscopy intensity–intensity autocorrelation functions [S(k,t)] and static light scattering intensities of 1 MDa hydroxypropylcellulose in aqueous solutions were measured. With increasing polymer concentration, over a narrow concentration range, S(k,t) gained a slow relaxation. The transition concentration for the appearance of the slow mode (ct) was also the transition concentration for the solution‐like/melt‐like rheological transition (c+) at which the solution shear viscosity [ηp(c)] passed over from a stretched exponential to a power‐law concentration dependence. To a good approximation, we found ct[η] ≈ c+[η] ≈ 4, [η] being the intrinsic viscosity. The appearance of the slow mode did not change the light scattering intensity (I): from a concentration lower than ct to a concentration greater than ct, I/c fell uniformly with increasing concentration. The slow mode thus did not arise from the formation of compact aggregates of polymer chains. If the polymer slow mode arose from long‐lived structures that were not concentration fluctuations, the structures involved much of the dissolved polymer. At 25 °C, the mean relaxation rate of the slow mode approximately matched the relaxation rate for the diffusion of 0.2‐μm‐diameter optical probes observed with the same scattering vector. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 323–333, 2005  相似文献   

3.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

4.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

5.
This article reports on studies regarding the photoisomerization kinetics and self‐assembly behaviors of two photoresponsive diblock copolymers, poly(4‐acetoxystyrene)‐block‐poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl acrylate] (poly(StO54b‐Cazo9) and poly(StO54b‐Cazo5)), which dissolved in a THF/H2O solution through two‐step reverse addition‐fragmentation transfer polymerization. We examined the effect of heating methods (i.e., conventional and microwave heating) on the polymerization kinetics of a 4‐acetoxystyrene‐based macrochain transfer agent (StO macro‐CTA). The kinetics studies on the homopolymerization of StO by using microwave heating demonstrated controllable characteristics with relatively narrow polydispersities at ~1.14. The diblock copolymers exhibited moderate thermal stability, with thermal decomposition temperatures greater than 343.3 °C, suggesting that the enhancement of the thermal stability was due to the incorporation of azobenzene segments into block copolymers. Poly(StO54b‐Cazo9) showed lower photoisomerization rate constants (kt = 0.039 s?1) compared with Cazo monomer (kt = 0.097 s?1). Micellar aggregates with a mean diameter of approximately 238.3 nm were formed by gradually adding water to the THF solution (water content = 10 vol %), and are shown in SEM and TEM images of the diblock copolymer. The results of this study contribute to the literature regarding the development of photoresponsive polymer materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3107–3117  相似文献   

6.
The homoleptic 1,3-diphosphacyclobutadiene sandwich complex [Co(η4-1,3-P2C2tBu2)2] behaved as a versatile and highly flexible metalloligand toward Ni2+, Ru2+, Rh+, and Pd2+ cations, forming a range of unusual oligonuclear compounds. The reaction of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Ni2Cp3]BF4 initially afforded the σ-complex [CpNi{Co(η4-1,3-P2C2tBu2)2}(thf)] ( 2 ), which converted into [Co(η4-CpNi{1,3-P2C2tBu2PC})(η4-1,3-P2C2tBu2)] ( 3 ) below room temperature. The structure of 3 contains an unprecedented 1,4-diphospha-2-nickelacyclopentadiene moiety formed by an oxidative addition of a ligand P−C bond onto nickel. At elevated temperatures, 3 isomerized to [Co(η4-CpNi{1,4-P2C2tBu22P,P})(η4-1,3-P2C2tBu2)] ( 4 ), which features a 1,3-diphospha-2-nickelacyclopentadiene unit. Transmetalation of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Cp*RuCl]4 (Cp*=C5Me5) afforded tetranuclear [(Cp*Ru)3(μ-Cl)2{Co(η4-1,3-P2C2tBu2)2}] ( 5 ), in which the [Co(η4-1,3-P2C2tBu2] anion acts as a chelate ligand toward Ru2+. The diphosphido complex [(Cp*Ru)2(μ,η2-P2)(μ,η2-C2tBu2)] ( 6 ) was formed as a byproduct. Pure compound 6 was isolated after prolonged heating of the reaction mixture. The reaction of [K(thf)2{Co(η4-1,3-P2C2R2)2}] (R=tBu; adamantyl, Ad) with [RhCl(cod)]2 (cod=1,5-cyclooctadiene) afforded unprecedented π-complexes [Rh(cod){Co(η4-1,3-P2C2R2)2}] ( 7 : R=tBu; 8 : R=Ad), in which one μ:η44-P2C2R2 ligand bridges two metal atoms. The pentanuclear complex [Pd3(PPh3)2{Co(η4-1,3-P2C2tBu2)2}2] ( 10 ), featuring a Pd3 chain and a rare 1,4-diphospha-2-butene ligand, was synthesized by reacting [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with cis-PdCl2(PPh3)2. The redox properties of selected compounds were analyzed by cyclic voltammetry, whereas DFT calculations gave additional insight into the electronic structures. The results of this study revealed several remarkable and previously unrecognized properties of the [Co(P2C2tBu2)2] anion.  相似文献   

7.
In this article, we demonstrate the Passerini three‐component reaction as a simple, effective method for the synthesis of polymers with double functional end groups, which are key precursors for the preparation of ABC miktoarm terpolymers. Thus, via the one‐step Passerini reaction of monomethoxy poly(ethylene glycol)–propionaldehyde (PEG‐CHO) with 2‐bromo‐2‐methylpropionic acid and propargyl isocyanoacetamide, the PEG chain end was simultaneously functionalized with one atom transfer radical polymerization (ATRP) initiating site and one alkynyl group. The resulting PEG(‐alkynyl)‐Br was then used for the synthesis of three types of miktoarm ABC terpolymers via two approaches. First, we conducted ATRP of N‐isopropylacrylamide (NIPAM), then click reaction with azido‐terminated polystyrene (PS‐N3) or poly(tert‐butyl acrylate) (PtBA‐N3) and obtained two ABC miktoarm terpolymers PEG(‐b‐PNIPAM)‐b‐PS and PEG(‐b‐PNIPAM)‐b‐PtBA. Alternatively, we conducted single electron transfer living radical polymerization of tBA and click reaction with PS‐N3 simultaneously to give PEG(‐b‐PtBA)‐b‐PS. All the polymer precursors and miktoarm terpolymers have been characterized by 1H NMR, Fourier transform infrared, gel permeation chromatography, demonstrating that both approaches provided well‐defined ABC miktoarm terpolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
We have studied the thermal behaviour of lorazepam (a) and oxazepam (b), defined the crystal form and the thermal stability. After recrystallization in several solvents under known temperature and pressure conditions the thermoanalytical study of samples has shown polymorphs for (a) and (b) and pseudopolymorphs for (a), (a) Polymorphs are I (tf = 183°C), II (Tf =173°C), III (Tf =170°C). IV (Tf, =163°C), V (Tf =158°C), VI (Tf, =153°C), and seven pseudopolymorphs, three of which are clathrate type of 1:1 molar composition with propanol, chloroform and isopentanol. We have found eight polymorphs for (b): I (Tf = 207°C), II (Tf=201°C), III (Tf=193°C), IV (Tf=189°C). A, B, C and D show a solid ? solid transition. Commercial samples of (a) are form I, those of (b) are form II.A spectral and dissolution kinetic study completes the thermoanalytical results in relation to biological availability.  相似文献   

9.
The reactions of [(η7-C7H7)Hf(η5-C5H5)] (1b) with the two-electron donor ligands tert-butyl isocyanide (tBuNC), 2,6-dimethylphenyl isocyanide (XyNC), 1,3,4,5-tetramethylimidazolin-2-ylidene (IMe) and trimethylphosphine (PMe3) are reported. The 1:1 complexes [(η7-C7H7)Hf(η5-C5H5)L] (2b, L = tBuNC; 3b, L = XyNC; 4b, L = IMe, 5b, L = PMe3) have been isolated in crystalline form, and their molecular structures have been determined by X-ray diffraction analyses. The stabilities of these hafnium complexes were probed via spectroscopic and theoretical methods, and the results were compared to those previously reported for the corresponding zirconium complexes derived from [(η7-C7H7)Zr(η5-C5H5)] (1a). The X-ray crystal structure of the PMe3 adduct [(η7-C7H7)Zr(η5-C5H5)(PMe3)] (5a) was also established.  相似文献   

10.
The synthesis and single crystal X‐ray structure determination are reported for the 2,2′ : 6′,2″‐terpyridine (= tpy) adduct of bismuth(III) nitrate. The hydroxide‐bridged dimer [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy)(η2‐NO3)2] with nine‐coordinate geometry about Bi was the only isolable product from all crystallization attempts in varying ratios of Bi(NO3) : terpy.; [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy) · (η2‐NO3)2] is triclinic, P 1, a = 7.941(8), b = 10.732(9), c = 11.235(9) Å; α = 63.05(1), β = 85.01(1), γ = 79.26(1)°, Z = 1, dimer, R = 0.058 for N0 = 2319.  相似文献   

11.
A series of novel block anionomers consisting of polyisobutylene (PIB) and poly(methacrylic acid) (PMAA) segments were prepared and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PMAA?), triblocks (PMAA?b‐PIB‐b‐PMAA?), and three‐arm star blocks [Φ(PIB‐b‐PMAA?)3] consisting of rubbery PIB blocks with a number‐average degree of polymerization of 50–1000 (number‐average molecular weight = 3000–54,000 g/mol) connected to blocks of PMAA? anions with a number‐average degree of polymerization of 5–20. The overall strategy for the synthesis of these constructs consisted of four steps: (1) synthesis by living cationic polymerization of t‐chloro‐monotelechelic, t‐chloro‐ditelechelic, and t‐chloro‐tritelechelic PIBs; (2) site transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of tert‐butyl methacrylate (tBMA); (3) ATRP of tBMA, and (4) hydrolysis of poly(tert‐butyl methacrylate) to PMAA?. The architectures created and the synthesis steps employed are summarized. Kinetic and model experiments greatly assisted in the development of convenient synthesis methods. The microarchitectures of the various block anionomers were confirmed by spectroscopy and other techniques. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3662–3678, 2002  相似文献   

12.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

13.
Well‐defined amphiphilic polymethylene‐b‐poly (acrylicacid) diblock copolymers have been synthesized via a new strategy combining polyhomologation and atom transfer radical polymerization (ATRP). Hydroxyl‐terminated polymethylenes (PM‐OH) with different molecular weights and narrow molecular weight distribution are obtained through the polyhomologation of dimethylsulfoxonium methylides following quantitative oxidation via trimethylamine‐N‐oxide dihydrate. Subsequently, polymethylene‐based macroinitiators (PM‐MIs Mn = 1,300 g mol?1 [Mw/Mn = 1.11] and Mn = 3,300 g mol?1 [Mw/Mn = 1.04]) are synthesized by transformation of terminal hydroxyl group of PM‐OH to α‐haloester in ~100% conversion. ATRPs of tert‐butyl acrylate (t‐BuA) are then carried out using PM‐MIs as initiator to construct PM‐b‐P(t‐BuA) diblock copolymers with controllable molecular weight (Mn = 8,800–15,800 g mol?1 Mw/Mn = 1.04–1.09) and different weight ratio of PM/P(t‐BuA) segment (1:1.7–1:11.2). The amphiphilic PM‐b‐PAA diblock copolymers are finally prepared by hydrolysis of PM‐b‐P(t‐BuA) copolymers and their self‐assembly behavior in water is preliminarily investigated via the determination of critical micelle concentrations, dynamic light scattering, and transmission electron microscope (TEM). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The synthesis and characterization of rare 1,3-diphosphacyclobutene transition-metal complexes is described. Reactions of the cobalt-hydride complex [Co(P2C2tBu2)2H] ( G ) with nBuLi, tBuLi, or PhLi afforded [Li(solv)x{Co(η3-P2C2tBu2HR)(η4-P2C2tBu2)}] ( 1 : R=nBu, (solv)x=(Et2O)2; 2 : R=tBu, (solv)x=(thf)2; 3 : R=Ph, (solv)x=(Et2O)(thf)2), with an η3-coordinated 1,3-diphosphacyclobutene ligand as a result of organyl-anion attack at one of the phosphorus atoms of the bis(1,3-diphosphacyclobutadiene) backbone. In contrast to the reactions with PhLi, the aryl-magnesium compounds p-tolyl magnesium chloride and p-fluorophenyl magnesium bromide deprotonate [Co(P2C2tBu2)2H] to give the magnesium salt [Mg(MeCN)6][Co(η4-P2C2tBu2)2]2 ( 4 ), which contains a bis(1,3-diphosphacyclobutadiene)-cobaltate anion. The [Co(η4-P2C2tBu2)2] anions are well separated from the octahedral [Mg(MeCN)6]2+ cation in the molecular structure of 4 . Compound 1 reacts with Me3SiCl to give neutral [Co(η3-P2C2tBu2HnBu)(η4-P2C2tBu2SiMe3)] ( 5 , 52 % yield) with an SiMe3 group attached to one of the P atoms of the previously unfunctionalized backbone.  相似文献   

15.
A series of star-branched polyisobutylenes with varying arm molecular weights was synthesized using the 2-chloro-2,4,4-trimethylpentane/TiCl4/pyridine initiating system and divinylbenzene (DVB) as a core-forming comonomer (linking agent). The resulting star-branched polymers were characterized with regard to the weight-average number of arms per star molecule (N̄w) and dilute solution viscosity behavior. As the molecular weight of the arm (M̄w, arm) was increased, dramatically longer star-forming reaction times were needed to produce fully developed star polymers. It was calculated that N̄w varied from 50 to 5 as the M̄w, arm was increased from 13,000 to 54,000 g/mol. The radius of gyration, Rg, of the star polymers was observed to increase as M̄w, arm was increased. The solution properties of the star polymers were evaluated in heptane using dilute solution viscometry. It was determined that the stars had a much higher [η] compared to the respective linear PIB arms, but a much lower [η] compared to a hypothetical linear analog of an equivalent molecular weight. The dependence of [η] on temperature for the stars and linear arms was very small over the temperature range 25 to 75°C, with only a very slight decrease with increasing temperature. [η]star was also determined to increase with increasing M̄w, arm, but decrease with increasing M̄w, star. The branching coefficient, g′, calculated for the stars at 25°C, increased as N̄w decreased and agre ed well with literature values for other star polymer systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3767–3778, 1997  相似文献   

16.
A series of titanium complexes with ansa‐(fluorenyl)(cyclododecylamido) ligands, Me2Si(η3‐R)(N‐c‐C12H23)TiMe2 [R = fluorenyl ( 5 ), 2,7‐tBu2fluorenyl ( 6 ), 3,6‐tBu2fluorenyl ( 7 )], was synthesized. The crystal structure of complex 6 revealed η3‐coordination of the fluorenyl moiety to the metal. Upon activation with trialkylaluminum‐free modified methylaluminoxane, complexes 5 – 7 as well as the corresponding tBu amide complexes, Me2Si(η3‐R)(NtBu)TiMe2 [R = fluorenyl ( 2 ), 2,7‐tBu2fluorenyl ( 3 ), 3,6‐tBu2fluorenyl ( 4 )], were adopted as the catalysts for the copolymerization of ethylene (E) and isobutylene (IB). Among these complexes, complex 6 was found to achieve the highest IB incorporation to produce alternating E‐IB copolymers. Complex 6 system also achieved copolymerization of E and limonene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

18.
Two types of sandwich complexes (η5‐MeOCH2CH2C9H6) Ln (η8‐C8H8) (THF)n [Ln=La (1), Nd(2), n=0; Sm(3), Dy (4) and Er (5). n = l] and (η5‐C4H7OCH2C9H6)Ln(η8‐C8H8) (THF) [Ln = La (6), Nd(7). Sm(8). Dy (9) and Er (10)] were synthesized by the reactions of LnCl3 with equivalent mole of K2C8H8, followed by treatment with corresponding potassium salt of ether‐substituted indenide. The molecular structures of 3 and 8 were determined by single crystal X‐ray diffraction. (η5 ‐MeOCH2CH2C9H6) Sm (η8‐C8H8) (THF) (3) monoclinic. Pt1/c, a = 1.4793(3) nm, b = 0.8716 (2) nm, c = 1.6149 (3) nm, β = 98. 17(3), V = 2.0612(7) nm3, Z = 4, R(F)=0.0362. (η5‐C4H7OCH2C9H6)Sm(η8‐C8H8)(THF) (8) orthorhombic. p212121. a = 0.8754(2) nm, b = 1.1000(2) nm, c = 2.3117 (5) nm, V = 2.2260(8) nm3, Z=4, R(F) =0.0497.  相似文献   

19.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°.  相似文献   

20.
The arene salts [(arene)2Fe](PF6)2 (arene = mesitylene 1a, and hexamethylbenzene, 1c) react readily with AlMe3 in dichloromethane or dibromomethane to produce the novel exo-halomethyl-η5-cyclohexadienyl salts [(η5-exo-CH2XC6H3Me3)(η6-C6H3Me3)Fe]PF6 (X = Cl, 2d; X = Br, 2e) and [(η5-exo-CH2XC6Me6)(η6-C6Me6)Fe]PF6 (X = Cl, 2f; X = Br, 2g) which have been characterized spectroscopically and, in the case of 2f, crystallographically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号