首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain water-soluble oligodepsipeptide with pendant thiol groups, the alternating co-oligomer [oligo(Glc-alt-Cys)], consisting of glycolic acid (Glc) and L -cysteine (Cys) residues as α-hydroxy acid and α-amino acid residues, respectively, was prepared by means of ring-opening homo-oligomerization of cyclo[Glc-Cys(MBzl)] and subsequent deprotection of methoxybenzyl groups. Moreover, to modify the properties of poly(lactic acid) [poly(LA)] and to introduce pendant thiol groups to poly(LA), the terpolymer of LA, Glc, and Cys {poly[LA-(Glc-Cys)]} was synthesized through ring-opening and copolymerization of L -lactide with the protected cyclodepsipeptide, cyclo[Glc-Cys(MBzl)] and subsequent deprotection of methoxybenzyl groups. By changing the mol fraction of (Glc-Cys) unit, the solubility, thermal transition, degradation behavior of the modified poly(LA), and the water contact angle of its film could be varied. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1283–1290, 1998  相似文献   

2.
The syntheses of amphiphilic AB‐type diblock copolymers composed of hydrophobic polylactide segment and hydrophilic polydepsipeptide segment with amino or carboxyl groups were performed. The protected cyclodepsipeptides cyclo[Glc‐Lys(Z)] and cyclo[Glc‐Asp(OBzl)] (where Glc is glycolic acid, Lys is lysine, Asp is aspartic acid, Z is benzyloxycarbonyl, and OBzl is benzyl) were first polymerized in tetrahydrofuran (THF) with potassium ethoxide as an initiator to obtain the corresponding protected polydepsipeptides. After the terminal hydroxyl groups of the protected polydepsipeptides were converted into the potassium alcoholates with K/naphthalene, L ‐lactide was polymerized in the presence of the corresponding polymeric alcoholates as macroinitiators in THF to obtain poly[Glc‐Lys(Z)]‐block‐poly(L ‐lactide) and poly[Glc‐Asp(OBzl)]‐block‐poly(L ‐lactide). Subsequent deprotection of Z and OBzl groups gave the objective amphiphiles poly(Glc‐Lys)‐block‐poly(L ‐lactide) and poly(Glc‐Asp)‐block‐poly(L ‐lactide), respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1218–1225, 2002  相似文献   

3.
Because poly(L ‐lactic acid) (PLLA) is a biodegradable polyester with low immunogenicity and good biocompatibility, it is used as a biomaterial. However, hydrophobic PLLA does not have any reactive groups. Thus, its application is limited. To increase the hydrophilicity of PLLA and accelerate its degradation rate, functionalized pendant groups and blocks were introduced through copolymerization with citric acid and poly(ethylene glycol) (PEG), respectively. This article describes the synthesis and characterization of poly(L ‐lactic‐co‐citric acid) (PLCA)‐PLLA and PLCA‐PEG multiblock copolymers. The results indicated that the hydrolysis rate was enhanced, and the hydrophilicity was improved because of the incorporation of carboxyl groups in PLCA‐PLLA. The joining of the PEG block led to improved hydrophilicity of PLCA, and the degradation rate of PLCA‐PEG accelerated as compared with that of PLCA‐PLLA. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2073–2081, 2003  相似文献   

4.
Optically active, cis-transoid poly(phenylacetylene) derivatives bearing a poly(gamma-benzyl-L-glutamate) [poly(PBGAm)] or poly(L-glutamic acid) [poly(PGAm)] chain as the pendant were prepared by polymerisation of the corresponding macromonomer with a rhodium catalyst followed by hydrolysis of the pendant ester groups. Their conformational changes in solution, induced by a helix-coil transition of the pendant polypeptides, were investigated using circular dichroism (CD) and absorption spectroscopies. A series of macromonomers with a different peptide chain lengths was synthesised by the polymerisation of the N-carboxyanhydride of gamma-benzyl-L-glutamate with a phenylacetylene bearing an alanine residue as the initiator. The obtained macromonomers (PBGAm) were further polymerised with a rhodium catalyst in N,N-dimethylformamide (DMF) to yield novel poly(phenylacetylene)s [poly(PBGAm)] with a poly(gamma-benzyl-L-glutamate) pendant. The poly(PBGAm) exhibited an induced circular dichroism (ICD) in the UV/Vis region of the polymer backbone in dimethyl sulfoxide (DMSO), probably due to the prevailing one-handed helix formation. The Cotton effect signs of a DMSO solution of the poly(PBGAm) were inverted and accompanied by a visible colour change in the presence of an increasing amount of chloroform or DMF containing lithium chloride. The results suggest that poly(PBGAm) may undergo a conformational change such as a helix-helix transition with a different helical pitch responding to a change in the alpha-helix content of the poly(gamma-benzyl-L-glutamate) pendant. Moreover, a water-soluble poly(PGAm) also showed a similar, but dramatic change in its helical conformation with a visible colour change stimulated by a helix-coil transition of the pendant poly(L-glutamic acid) chains by changing the pH in water.  相似文献   

5.
The syntheses and properties of hyperbranched poly(o‐hydroxyamide) [poly(HAB‐BCC)‐ABP], poly[o‐(t‐butoxycarbonyl)amide] [poly(HAB‐BCC)‐ABP‐t‐BOC], and polybenzoxazole [poly(HAB‐cycloBCC)] were examined. Poly(HAB‐BCC)‐ABP was obtained from the polycondensation reaction of 3,3‐dihydroxy‐4,4′‐diaminobiphenyl (HAB) as an A2‐monomer and 1,3,5‐benzenetricarboxylchloride (BCC) as a B3‐monomer with 2‐amino‐4‐t‐butylphenol (ABP) in NMP in the presence of pyridine for 24 h. The reaction of poly(HAB‐BCC)‐ABP and di‐t‐buthylcarbonate (DiBOC) was performed to obtain the corresponding poly(HAB‐BCC)‐ABP‐t‐BOC with pendant t‐BOC groups. The thermal cyclodehydration of poly(HAB‐BCC)‐ABP‐t‐BOC was carried out in the film sate at 400 °C, affording the poly(HAB‐cyclo‐BCC) in quantitative yield. Furthermore, the solubilities and thermal properties of these polymers were examined. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3640–3649, 2006  相似文献   

6.
Stereoblock poly(lactic acid) consisting of D- and L-lactate stereosequences can be successfully synthesized by solid-state polycondensation of a 1:1 mixture of poly(L-lactic acid) and poly(D-lactic acid). In the first step, melt-polycondensation of L- and D-lactic acids is conducted to synthesize poly(L-lactic acid) and poly(D-lactic acid) with a medium-molecular-weight, respectively. In the next step, these poly(L-lactic acid) and poly(D-lactic acid) are melt-blended in 1:1 ratio to allow formation of their stereocomplex. In the last step, this melt-blend is subjected to solid-state polycondensation at temperature where the dehydrative condensation is allowed to promote chain extension in the amorphous phase with the stereocomplex crystals preserved. Finally, stereoblock poly(lactic acid) having high-molecular-weight is obtained. The stereoblock poly(lactic acid) synthesized by this way shows a higher melting temperature in consequence of the controlled block lengths and the resulting higher-molecular-weight. The product characterization as well as the optimization of the polymerization conditions is described. Changes in M(w) of stereoblock poly(lactic acid) (sb-PLA) as a function of the reaction time.  相似文献   

7.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

8.
A reactive extrusion-calendering process was used in order to manufacture sheets with a nominal thickness of 1 mm of poly(lactic acid) and its nanocomposite with 2.5% of an organo-modified montmorillonite. During processing, the properties of the melt were stabilized and enhanced by the addition of 0.5% of a styrene-acrylic multi-functional-epoxide oligomeric reactive agent. The general analytical equation has been used in order to evaluate the kinetic parameters of the thermal degradation of poly(lactic acid) obtained by reactive extrusion and its nanocomposite. Various empirical and theoretical solid-state mechanisms have been tested to elucidate the best kinetic model. In order to reach this goal, master plots have been constructed by means of standardized conversion functions. Given that it is not always easy to visualize the best accordance between experimental and theoretical values of standardized conversion functions, a new index has been developed to quantitatively discern the best mechanism. By doing that, it has been possible to determine the right activation energy of the thermal degradation. It has been demonstrated that the best theoretical mechanism was the random scission of macromolecular chains within the polymer matrix. This was also in accordance with an empirical kinetic model based on an autocatalytic kinetic model. The presence of montmorillonite nanoparticles has been beneficial and has enhanced the thermal stability of poly(lactic acid).  相似文献   

9.
Well-controlled poly(alpha-hydroxyacids) featuring pendant carboxylic acid groups were prepared under mild conditions via DMAP-catalyzed ROP of the O-carboxyanhydrides derived from glutamic and lactic acids.  相似文献   

10.

A study of the slow hydrolysis of labile acetal groups by low concentrations of lactic acid to release the active molecules is reported. A prototype molecule containing cyclic acetal groups, dimethyl‐2,3‐O‐benzylidene‐L‐tartrate (DMTAc) and the same molecule incorporated as a pendant group in a polyamide were studied for their hydrolysis by low concentrations of lactic acid. The release of benzaldehyde during slow hydrolysis is monitored by UV‐vis and 1H‐NMR spectroscopy. This study is very useful to ultimately design and synthesize a polymer with covalently bound insecticidal/anti‐microbial/anti‐fungal materials for the development of controlled release formulations.  相似文献   

11.
Abstract

Postpolymerization of vinyl monomers initiated by pendant peroxycarbonate groups of grafted polymer chains on carbon black (CB) was investigated. The grafting of polymers having pendant peroxycarbonate groups onto CB was achieved by the trapping of polymer radicals formed by the thermal decomposition of copolymers of t-butylperoxy-2-methacryloyloxyethyl-carbonate (HEPO) with vinyl monomers such as vinyl acetate (VAc), styrene (St) and methyl methacrylate (MMA). The copolymers having pendant peroxycarbonate groups were prepared by copolym-erization of HEPO with vinyl monomers using azo initiator under irradiation of UV light at room temperature. The amount of remaining pendant peroxycarbonate groups of the poly(VAc-co-HEPO)-grafted CB obtained from the reaction at 90°C was maximum and decreased above the temperature. Furthermore, the postpolymerization of vinyl monomers, such as St, MMA, and VAc was initiated in the presence of poly(VAc-co-HEPO)-grafted and poly(St-co-HEPO)-grafted CB and the corresponding polymers were postgrafted onto CB to give branched polymer-grafted CB. The percentage of poly(St)-postgrafting (proportion of post-grafted poly(St) to poly(MMA-co-HEPO)-grafted CB used) increased with increasing polymerization time, but became constant at 20% after 4 hours.  相似文献   

12.
The grafting of poly(methyl methacrylate) (PMMA) onto biosynthesized γ-poly(glutamic acid) (γ-PGA) initiated by pendant azo groups introduced onto γ-PGA was performed. The introduction of pendant azo groups onto γ-PGA was achieved by the reaction of carboxyl groups of γ-PGA with azo initiators having hydroxyl or amino groups, such as 2,2-azobis[2-(hydroxymethyl)propionitrile] (AHP), 2,2′-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (AMHP), and 2,2′-azobis[2-(2-imidazolin-2-yl)propane] (AIP), using N,N′-dicyclohexylcarbodiimide. The amount of pendant AHP groups introduced onto γ-PGA was estimated to be 0.15 mmol/g. Untreated γ-PGA failed to initiate the polymerization of MMA. On the contrary, the polymerization of MMA was found to be initiated in the presence of γ-PGA having azo groups: the polymerization rate was proportional to the square root of the concentration of γ-PGA having pendant azo groups. During the polymerization PMMA was grafted onto γ-PGA; the percentage of grafting of PMMA onto γ-PGA obtained from the graft polymerization initiated by pendant AHP, AMHP, and AIP groups was evaluated to be 65.0, 53.1, and 29.0%, respectively. Differential scanning calorimetric analysis shows that the endotherm transition point of γ-PGA at 220°C disappears by the grafting of PMMA onto the polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Aromatic polyester, copolyester, and poly(ester-amide-thioester) having pendant carboxyl groups are directly synthesized by the organic phase/water phase interfacial polyconden-sation using low-molecular and polymeric phase transfer catalysts. Spectral analysis of the resulting polymers indicates that the nucleophilicity of salts of phenols to diacid chloride is far higher than that of salts of carboxylic acids and chemoselective esterification occurs in a 100% yield. Even if the polymeric catalyst having amino acid moiety as a nucleophilic group is used in the polycondensation, the polymers do not contain anhydride groups. The polyester can be almost quantitatively converted to polymers with different reactive groups by reacting the pendant carboxyl groups with alkyl halides in a DMAc-H2O mixture con-taining K2CO3. A bifunctional catalytic mechanism is proposed for the chemical modification of the polyesters. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A polymeric delocalized carbanion of poly(divinylbenzene) [poly(DVB)] (2) was obtained by the proton abstraction with alkyllithium from the acidic methine moieties (HA) of linear poly(DVB) (1) , which was prepared by the polymerization of DVB initiated by acetyl perchlorate. The formation of polyanion 2 was confirmed by UV–visible spectroscopy (λmax = 630 nm) and the reaction with methyl iodide to give methylated poly(DVB). Delocalized polyanion 2 reacted with various electrophilic reagents in THF at 60°C, to yield poly(DVB) derivatives having pendant trimethylsilyl, vinyl, vinyloxyl, hydroxyl, and carboxyl groups. Proton abstraction with base and subsequent reactions with electrophiles were also studied with the linear unsaturated dimer of styrene (1,3-diphenyl-1-butene), as a model for poly(DVB) 1 .  相似文献   

15.
A mass transfer model originally proposed for the permeation of zinc and l-phenylalanine was slightly modified and used for calculating the mass transfer resistances in lactic acid permeation (using the secondary amine Amberlite LA-2 as a carrier) and l-leucine permeation (using the quaternary ammoniumchloride Aliquat 336 as a carrier). The results show that under optimized conditions lactic acid permeation is controlled by the rate of reaction and that l-leucine permeation is controlled by the rate of reaction and the diffusion through the emulsion globule. The model results were compared with batch experiments separating lactic acid and l-leucine from real fermentation broths. The comparison shows that the separation rate is affected by co-transport of pH regulating agents and to a smaller extent by the co-transport of water.  相似文献   

16.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

17.
以琥珀酸、富马酸、丁二醇为原料,用共缩聚的方法合成了一系列高分子量聚 (琥珀酸丁二醇酯-共-富马酸丁二醇酯)。然后在催化剂四氧化锇和N-甲基吗啉- N-氧化物以及水存在下,使高分子主链中富马酸丁二醇酯共聚单元的碳碳不饱和双 键发生羟基化反应得到含有亲水性侧羟基的功能性聚酯。对上述合成的生物降解性 高分子运用核磁共振(NMR)、红外(FT-IR)、热分析等方法进行了结构与物理性 能表征。  相似文献   

18.
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

19.
Functionalized poly(lactic acid) having sulfur‐protected groups along the chain have been synthesized with the ultimate aim to obtain materials for reversible and degradable self‐assembly systems. The first step in the synthesis was the preparation of hydroxy‐(4‐methyl‐phenylsulfanyl)‐propionic acid and hydroxy‐(tritylsulfanyl)‐propionic acid. These sulfur‐functionalized hydroxy acids were subsequently used as comonomers in the condensation polymerization of lactic acid producing functionalized polyesters with thio‐protected groups along the chain. The ratio of functionalized hydroxyl‐acid in the copolymer was determined by the feed ratio. The polyesters obtained were amorphous and size exclusion chromatography analysis showed a monomodal distribution. When treated with iodine, the polyesters chains bearing the tritylsulfanyl side groups assembled with the formation of S? S bridges and the molecular weight increased accordingly. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
首先,采用乳酸为引发剂,辛酸亚锡为催化剂,引发丙交酯开环聚合制得具有缩聚活性的L-聚乳酸和D-聚乳酸;然后,将两者熔融共混后进行固相缩聚,合成了一系列立体嵌段聚乳酸。采用核磁共振(NMR)、凝胶渗透色谱(GPC)及差示扫描量热仪(DSC)分析了产物的链结构、重均分子量、热性能,并探讨了均相晶体和立体复合晶体共存情况下的固相缩聚机理。结果表明,固相缩聚产物分子量增长的适宜反应条件为:反应时间30h,较低的催化剂含量,L-聚乳酸质量分数为80%。L-聚乳酸和D-聚乳酸共混物较低的初始立体复合晶体结晶度有利于后续固相缩聚过程中产物分子量的增长;固相缩聚不仅发生在异链之间,而且也发生在同链之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号