首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior in propylene polymerization of divalent titanium compounds of type [η6-areneTiAl2Cl8], both as such and supported on activated MgCl2, has been studied and compared to that of the simple catalyst MgCl2/TiCl4. Triethylaluminium was used as cocatalyst. The Ti–arene complexes were active both in the presence and in the absence of hydrogen, in contrast to earlier reports that divalent titanium species are active for ethylene but not for propylene polymerization. 13C-NMR analysis of low molecular weight polymer fractions indicated that the hydrogen activation effect observed for the MgCl2-supported catalysts should be ascribed to reactivation of 2,1-inserted (“dormant”) sites via chain transfer, rather than to (re)generation of active trivalent Ti via oxidative addition of hydrogen to divalent species. Decay in activity during polymerization was observed with both catalysts, indicating that for MgCl2/TiCl4 catalysts decay is not necessarily due to overreduction of Ti to the divalent state during polymerization. In ethylene polymerization both catalysts exhibited an acceleration rather than a decay profile. It is suggested that the observed decay in activity during propylene polymerization may be due to the formation of clustered species that are too hindered for propylene but that allow ethylene polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2645–2652, 1997  相似文献   

2.
The hydrogen activation effect in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts is usually explained by hydrogenolysis of dormant active centers formed after secondary insertion of a propylene molecule into the growing polymer chain. This article proposes a different mechanism for the hydrogen activation effect due to hydrogenolysis of the Ti? iso‐C3H7 group. This group can be formed in two reactions: (1) after secondary propylene insertion into the Ti? H bond (which is generated after β‐hydrogen elimination in the growing polymer chain or after chain transfer with hydrogen), and (2) in the chain transfer with propylene if a propylene molecule is coordinated to the Ti atom in the secondary orientation. The Ti? CH(CH3)2 species is relatively stable, possibly because of the β‐agostic interaction between the H atom of one of its CH3 groups and the Ti atom. The validity of this mechanism was demonstrated in a gas chromatography study of oligomers formed in ethylene/α‐olefin copolymerization reactions with δ‐TiCl3/AlEt3 and TiCl4/dibutyl phthalate/MgCl2–AlEt3 catalysts. A quantitative analysis of gas chromatography data for ethylene/propylene co‐oligomers showed that the probability of secondary propylene insertion into the Ti? H bond was only 3–4 times lower than the probability of primary insertion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1353–1365, 2002  相似文献   

3.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

4.
This article discusses the similarities and differences between active centers in propylene and ethylene polymerization reactions over the same Ti‐based catalysts. These correlations were examined by comparing the polymerization kinetics of both monomers over two different Ti‐based catalyst systems, δ‐TiCl3‐AlEt3 and TiCl4/DBP/MgCl2‐AlEt3/PhSi(OEt)3, by comparing the molecular weight distributions of respective polymers, in consecutive ethylene/propylene and propylene/ethylene homopolymerization reactions, and by examining the IR spectra of “impact‐resistant” polypropylene (a mixture of isotactic polypropylene and an ethylene/propylene copolymer). The results of these experiments indicated that Ti‐based catalysts contain two families of active centers. The centers of the first family, which are relatively unstable kinetically, are capable of polymerizing and copolymerizing all olefins. This family includes from four to six populations of centers that differ in their stereospecificity, average molecular weights of polymer molecules they produce, and in the values of reactivity ratios in olefin copolymerization reactions. The centers of the second family (two populations of centers) efficiently polymerize only ethylene. They do not homopolymerize α‐olefins and, if used in ethylene/α‐olefin copolymerization reactions, incorporate α‐olefin molecules very poorly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1745–1758, 2003  相似文献   

5.
The use of post‐metallocene bis‐phenylphenoxy catalysts to polymerize ethylene under high ethylene pressures (>25,000 psi) results in some remarkable catalytic properties. The high ethylene pressure produces molar ethylene concentrations in the reactor as much as 40 times higher than in typical low pressure ethylene polymerizations. This high ethylene concentration results in high catalyst efficiency at high temperatures and low reactor residence time, between 180 °C and 240 °C the catalyst efficiency surprisingly increases with increasing temperature, allowing for use of these catalysts at temperatures much higher than can be utilized in the low pressure processes. It has further been demonstrated that under these conditions increasing hydrogen levels up to 0.5 mol% does not significantly affect the polymer molecular weight; however, polymer molecular weight control can be realized with varying reactor temperature. The polymer produced is shown to be high density polyethylene made from a single site catalyst and not free radical initiated low density polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 861–866  相似文献   

6.
Hydrogen is a very effective chain‐transfer agent in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts. However, measurements of the hydrogen concentration effect on the molecular weight of polypropylene prepared with a supported TiCl4/dibutyl phthalate/MgCl2 catalyst show a peculiar effect: hydrogen efficiency in the chain transfer significantly decreases with concentration, and at very high concentrations, hydrogen no longer affects the molecular weight of polypropylene. A detailed analysis of kinetic features of chain‐transfer reactions for different types of active centers in the catalyst suggests that chain transfer with hydrogen is not merely the hydrogenolysis reaction of the Ti? C bond in an active center but proceeds with the participation of a coordinated propylene molecule. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1899–1911, 2002  相似文献   

7.
DADNiX2 nickel–diimine complexes [DAD = 2,6‐iPr2? C6H3? N?C(Me)? C(Me)?N? 2,6‐iPr2? C6H3] containing nonchelating pseudohalide ligands [X = isothiocyanate (NCS) for complex 1 and isoselenocyanate (NCSe) for complex 2 ] were synthesized, and the propylene polymerization with these complexes and also with the Br ligand (X = Br for complex 3 ) activated by methylaluminoxane (MAO) were investigated (systems 1 , 2 , and 3 /MAO). The polypropylenes obtained with systems 1 , 2 , and 3 were amorphous polymers and had high molecular weights and narrow molecular weight distributions. Catalyst system 1 showed a relatively high activity even at a low Al/Ni ratio and reached the maximum activity at the molar ratio of Al/Ni = 500, unlike system 3 . Increases in the reaction temperature and propylene pressure favored an increase in the catalytic activity. The spectra of polypropylenes looked like those of propylene–ethylene copolymers containing syndiotactic propylene and ethylene sequences. At the same temperature and pressure, system 2 presented the highest number of propylene sequences, and system 3 presented the lowest. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 458–466, 2006  相似文献   

8.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit several features which differentiate them from polymerization reactions of α-olefins: a relatively low ethylene reactivity, higher polymerization rates in the presence of α-olefins, a high reaction order with respect to ethylene concentration, and strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions (see ref. 1 ) provided the basis for a new reaction scheme which explains all these features by postulating the equilibrium formation of a Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts that the β-agostically stabilized Ti C2H5 groups can decompose in the β-hydride elimination reaction with expulsion of ethylene and the formation of a Ti H bond even in the absence of hydrogen in the reaction medium. If D2 is used as a chain transfer agent instead of H2, the mechanism predicts the formation of deuterated ethylene molecules, which copolymerize with protioethylene. To prove this prediction, several ethylene homopolymerization reactions were carried out with a supported Ziegler–Natta titanium-based catalyst in the presence of large amounts of D2. Analysis of gaseous reaction products and polymers confirmed the formation of several types of deuterated ethylene molecules and protio/deuterioethylene copolymers, respectively. In contrast, a metallocene catalyst, Cp2ZrCl2 MAO, does not exhibit these kinetic features. In the presence of deuterium, it produces only DCH2 CH2 (CH2 CH2)x CH2 CH2D molecules. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4273–4280, 1999  相似文献   

9.
Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially increasing polymerization rate. The monomer concentration in the polymer has been calculated with the Flory–Huggins equation. The kinetic parameters have been determined by fitting the reaction rate curves with the model. At high temperatures, pressures, and hydrogen concentrations a runaway on particle scale may occur leading to reduced polymer yields. The molecular weight and molecular weight distribution of the polymer samples could be described by a “two-site model.” At constant temperature the chain-transfer probability of sites 1 and 2 depends only on the hydrogen concentration divided by the monomer concentration. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 500–513, 2001  相似文献   

10.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit a number of features that differentiate them from polymerization reactions of α olefins: (1) a relatively low ethylene reactivity, (2) markedly higher polymerization rates in the presence of α olefins, (3) a high reaction order with respect to ethylene concentration, and (4) a strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions1 provided the basis for a new kinetic scheme that postulates the equilibrium formation of Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts several new features of ethylene polymerization reactions, one being that chain initiation via insertion of any α-olefin molecule into the Ti H bond should proceed with an increased probability compared to that via ethylene insertion into the same bond. As a result, a significant fraction of ethylene/α-olefin copolymer chains should contain α-olefin units as the starting units. This article provides experimental data supporting this prediction on the basis of both a detailed structural analysis of co-oligomers formed in ethylene/1-pentene and ethylene/4-methyl-1-pentene copolymerization reactions and a spectroscopic analysis of chain ends in the copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4281–4294, 1999  相似文献   

11.
This article discusses a chemical route to prepare new ethylene/propylene copolymers (EP) containing a terminal reactive group, such as ?‐CH3 and OH. The chemistry involves metallocene‐mediated ethylene/propylene copolymerization in the presence of a consecutive chain transfer agent—a mixture of hydrogen and styrene derivatives carrying a CH3 (p‐MS) or a silane‐protected OH (St‐OSi). The major challenge is to find suitable reaction conditions that can simultaneously carry out effective ethylene/propylene copolymerization and incorporation of the styrenic molecule (St‐f) at the polymer chain end, in other words, altering the St‐f incorporation mode from copolymerization to chain transfer. A systematic study was conducted to examine several metallocene catalyst systems and reaction conditions. Both [(C5Me4)SiMe2N(t‐Bu)]TiCl2 and rac‐Et(Ind)2ZrCl2, under certain H2 pressures, were found to be suitable catalyst systems to perform the combined task. A broad range of St‐f terminated EP copolymers (EP‐t‐p‐MS and EP‐t‐St‐OH), with various compositions and molecular weights, have been prepared with polymer molecular weight inversely proportional to the molar ratio of [St‐f]/[monomer]. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1858–1872, 2005  相似文献   

12.
Kinetics of ethylene homopolymerization reactions and ethylene/1-hexene copolymerization reactions using a supported Ziegler–Natta catalyst was carried out over a broad range of reaction conditions. The kinetic data were analyzed using a concept of multicenter catalysis with different centers that respond differently to changes in reaction parameters. The catalyst contains five types of active centers that differ in the molecular weights of material they produce and in their copolymerization ability. In ethylene homopolymerization reactions, each active center has a high reaction order with respect to ethylene concentration, close to the second order. In ethylene/α-olefin copolymerization reactions, the centers that have poor copolymerization ability retain this high reaction order, whereas the centers that have good copolymerization ability change the reaction order to the first order. Hydrogen depresses activity of each type of center in the homopolymerization reactions in a reversible manner; however, the centers that copolymerize ethylene and α-olefins well are not depressed if an α-olefin is present in the reaction medium. Introduction of an α-olefin significantly increases activity of those centers, which are effective in copolymerizing it with ethylene but does not affect the centers that copolymerize ethylene and α-olefins poorly. To explain these kinetic features, a new reaction scheme is proposed. It is based on a hypothesis that the Ti—C2H5 bond in active centers has low reactivity due to the equilibrium formation of a Ti—C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4255–4272, 1999  相似文献   

13.
A kind of novel bridged nonmetallocene catalysts was synthesized by the treatment of N,N‐imidazole and N,N‐phenylimidazole with n‐BuLi, and MCl4 (M = Ti, Zr) in THF. Those catalysts were performed for ethylene polymerization after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M ratio, pressure of monomer, and concentration of catalysts on ethylene polymerization behaviors were investigated in detail. Those results revealed that the catalyst system was favorable for ethylene polymerization with high catalytic activity. The polymer was characterized by 13C NMR, WAXD, GPC, and DSC. The result confirmed that the obtained polyethylene featured broad molecular weight distribution around 20, linear structure, and relative low melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 33–37, 2008  相似文献   

14.
Neutral Ni(II) salicylaldiminato complexes activated with modified methylaluminoxane as catalysts were used for the vinylic polymerization of norbornene. Catalyst activities of up to 7.08 × 104 kgpol/(molNi · h) and viscosity‐average molecular weights of polymer up to 1.5 × 106 g/mol were observed at optimum conditions. Polynorbornenes are amorphous, soluble in organic solvents, highly stable, and show glass‐transition temperatures around 390 °C. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of the reaction parameters such as the Al/Ni ratio, monomer/catalyst ratio, monomer concentration, polymerization reaction temperature, and time. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2680–2685, 2002  相似文献   

15.
The article discusses recent results of kinetic analysis of propylene and ethylene polymerization reactions with several types of Ti-based catalysts. All these catalysts, after activation with organoaluminum cocatalysts, contain from two to four types of highly isospecific centers (which produce the bulk of the crystalline fraction of polypropylene) as well as several centers of reduced isospecificity. The following subjects are discussed: the distribution of active centers with respect to isospecificity, the effect of hydrogen on polymerization rates of propylene and ethylene, and similarities and differences between active centers in propylene and ethylene polymerization reactions over the same catalysts. Ti-based catalysts contain two families of active centers. The centers of the first family are capable of polymerizing and copolymerizing all α-olefins and ethylene. The centers of the second family efficiently polymerize only ethylene. Differences in the kinetic effects of hydrogen and α-olefins on polymerization reactions of ethylene and propylene can be rationalized using a single assumption that active centers with alkyl groups containing methyl groups in the β-position with respect to the Ti atom, Ti-CH(CH3)R, are unusually unreactive in olefin insertion reactions. In the case of ethylene polymerization reactions, such an alkyl group is the ethyl group (in the Ti-C2H5 moiety) and, in the case of propylene polymerization reactions, it is predominantly the isopropyl group in the Ti-CH(CH3)2 moiety. Published in Russian in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 11, pp. 1911–1934. The text was submitted by the authors in English.  相似文献   

16.
A series of ethylene, propylene homopolymerizations, and ethylene/propylene copolymerization catalyzed with rac‐Et(Ind)2ZrCl2/modified methylaluminoxane (MMAO) were conducted under the same conditions for different duration ranging from 2.5 to 30 min, and quenched with 2‐thiophenecarbonyl chloride to label a 2‐thiophenecarbonyl on each propagation chain end. The change of active center ratio ([C*]/[Zr]) with polymerization time in each polymerization system was determined. Changes of polymerization rate, molecular weight, isotacticity (for propylene homopolymerization) and copolymer composition with time were also studied. [C*]/[Zr] strongly depended on type of monomer, with the propylene homopolymerization system presented much lower [C*]/[Zr] (ca. 25%) than the ethylene homopolymerization and ethylene–propylene copolymerization systems. In the copolymerization system, [C*]/[Zr] increased continuously in the reaction process until a maximum value of 98.7% was reached, which was much higher than the maximum [C*]/[Zr] of ethylene homopolymerization (ca. 70%). The chain propagation rate constant (kp) of propylene polymerization is very close to that of ethylene polymerization, but the propylene insertion rate constant is much smaller than the ethylene insertion rate constant in the copolymerization system, meaning that the active centers in the homopolymerization system are different from those in the copolymerization system. Ethylene insertion rate constant in the copolymerization system was much higher than that in the ethylene homopolymerization in the first 10 min of reaction. A mechanistic model was proposed to explain the observed activation of ethylene polymerization by propylene addition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 867–875  相似文献   

17.
This report describes propylene polymerization reactions with titanium complexes bearing carbamato ligands, Ti(O2CNMe2)Cl2 ( I ) and Ti(O2CR2)4 [R2 = NMe2 ( II ), NEt2 ( III ) and ( IV )]. Combinations of these complexes and MAO form catalysts for the synthesis of atactic polypropylene, as confirmed by FT‐IR, DSC and 13C NMR analysis. Effects of main reaction parameters on the catalyst activity were studied including the type of complex, solvent, temperature, and the [Al]/[Ti] molar ratio. The highest activity was observed when chlorobenzene was used as a solvent and AlMe3‐depleted MAO was employed as a cocatalyst. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4095–4102  相似文献   

18.
We studied the chemical reaction process of polypropylene (PP), ethylene‐propylene copolymer (EPM), and ethylene‐propylene‐diene copolymer (EPDM) crosslinking induced by dicumyl peroxide (DCP) using electron spin resonance (ESR). Free radicals appeared at an elevated temperature of around 120 °C and the behavior and kinetics of the reaction process were observed at 180 °C. The radical species detected in PP were alkyl type radicals, formed by the abstraction of hydrogen atoms from the tertiary carbon of polymer chains. For EPDM containing a diene component, the radicals were trapped at double bonds in this diene component to form allyl radicals. The resolutions of these spectra were extremely clear; hence, isotropic spectra of these polymer radicals were obtained. We measured the ESR at high temperatures and confirmed that the process of crosslinking induced by DCP was a free radical reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3383–3389, 2000  相似文献   

19.
The kinetics of chain polymerization is investigated for the case of a complicating side reaction. In addition to the polymerization reaction, Ai + MAi+1, there is a reversible side reaction, Ai + QBi. Initiation is assumed to be instantaneous. The monomer concentration M, and the concentration of the reacting species Q, are assumed to be constant. The reaction kinetics are solved exactly, yielding the distribution of living and dormant polymer, as well as the molecular weight distribution, as explicit functions of the reaction rate constants and the time. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1711–1725, 1997  相似文献   

20.
Principal kinetic data are presented for ethylene homopolymerization and ethylene/1‐hexene copolymerization reactions with two types of chromium oxide catalyst. The reaction rate of the homopolymerization reaction is first order with respect to ethylene concentration (both for gas‐phase and slurry reactions); its effective activation energy is 10.2 kcal/mol (42.8 kJ/mol). The r1 value for ethylene/1‐hexene copolymerization reactions with the catalysts is ~30, which places these catalysts in terms of efficiency of α‐olefin copolymerization with ethylene between metallocene catalysts (r1 ~ 20) and Ti‐based Ziegler‐Natta catalysts (r1 in the 80–120 range). GPC, DSC, and Crystaf data for ethylene/1‐hexene copolymers of different compositions produced with the catalysts show that the reaction products have broad molecular weight and compositional distributions. A combination of kinetic data and structural data for the copolymers provided detailed information about the frequency of chain transfer reactions for several types of active centers present in the catalysts, their copolymerization efficiency, and stability. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5315–5329, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号