首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We construct and analyze a mixed finite volume method on quadrilateral grids for elliptic problems written as a system of two first order PDEs in the state variable (e.g., pressure) and its flux (e.g., Darcy velocity). An important point is that no staggered grids or covolumes are used to stabilize the system. Only a single primary grid system is adopted, and the degrees of freedom are imposed on the interfaces. The approximate flux is sought in the lowest-order Raviart-Thomas space and the pressure field in the rotated- nonconforming space. Furthermore, we demonstrate that the present finite volume method can be interpreted as a rotated- nonconforming finite element method for the pressure with a simple local recovery of flux. Numerical results are presented for a variety of problems which confirm the usefulness and effectiveness of the method.

  相似文献   


2.
In this article we construct and analyze a mixed finite volume method for second‐order nonlinear elliptic problems employing H(div; Ω)‐conforming approximations for the vector variable and completely discontinuous approximations for the scalar variable. The main attractive feature of our method is that, although the vector variable is H(div; Ω)‐conforming, one can eliminate it in a local manner to obtain a discontinuous Galerkin method for the scalar variable. Optimal error estimates will be established for both vector and scalar variables. We also present a fully discrete version of this method that is more convenient for computational purposes. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

3.
We study a new mixed finite element of lowest order for general quadrilateral grids which gives optimal order error in the H(div)-norm. This new element is designed so that the H(div)-projection Πh satisfies ∇ · Πh = Phdiv. A rigorous optimal order error estimate is carried out by proving a modified version of the Bramble-Hilbert lemma for vector variables. We show that a local H(div)-projection reproducing certain polynomials suffices to yield an optimal L2-error estimate for the velocity and hence our approach also provides an improved error estimate for original Raviart-Thomas element of lowest order. Numerical experiments are presented to verify our theory.  相似文献   

4.
Central to the understanding of problems in water quality and quantity for effective management of water resources is the development of accurate numerical models to stimulate groundwater flows and contaminant transfer. We discuss several important difficulties arising in modeling of subsurface flow and present promising numerical procedures for alleviating these problems. Furthermore, we describe mixed-finite element techniques for accurately approximating fluid velocities, and review computational results on a variety of hydrologic problems.  相似文献   

5.
In this paper, first we discuss a technique to compare finite volume method and some well-known finite element methods, namely the dual mixed methods and nonconforming primal methods, for elliptic equations. These both equivalences are exploited to give us a posteriori error estimator for finite volume methods. This estimator is explicitly given, easy to compute and asymptotically exact without any regularity of the solution in unstructured grids.  相似文献   

6.
In this article, we propose a finite volume limiter function for a reconstruction on the three-point stencil. Compared to classical limiter functions in the MUSCL framework, which yield 2nd-order accuracy, the new limiter is 3rd-order accurate for smooth solution. In an earlier work, such a 3rd-order limiter function was proposed and showed successful results [2]. However, it came with unspecified parameters. We close this gap by giving information on these parameters.  相似文献   

7.
The mathematical model of the three‐dimensional semiconductor devices of heat conduction is described by a system of four quasi‐linear partial differential equations for initial boundary value problem. One equation of elliptic form is for the electric potential; two equations of convection‐dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Upwind finite difference fractional step methods are put forward. Some techniques, such as calculus of variations, energy method multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates and techniques are adopted. Optimal order estimates in L2 norm are derived to determine the error in the approximate solution.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

8.
We propose a new well-balanced central finite volume scheme for the Ripa system both in one and two space dimensions. The Ripa system is a nonhomogeneous hyperbolic system with a non-zero source term that is obtained from the shallow water equations system by incorporating horizontal temperature gradients. The proposed numerical scheme is a second-order accurate finite volume method that evolves a non-oscillatory numerical solution on a single grid, avoids the process of solving Riemann problems arising at the cell interfaces, and follows a well-balanced discretization that ensures the steady state requirement by discretizing the geometrical source term according to the discretization of the flux terms. Furthermore the proposed scheme mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The proposed scheme is then applied and classical one and two-dimensional Ripa problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

9.
This paper studies higher-order finite volume methods for solving elliptic boundary value problems. We develop a general framework for construction and analysis of higher-order finite volume methods. Specifically, we establish the boundedness and uniform ellipticity of the bilinear forms for the methods, and show that they lead to an optimal error estimate of the methods. We prove that the uniform local-ellipticity of the family of the bilinear forms ensures its uniform ellipticity. We then establish necessary and sufficient conditions for the uniform local-ellipticity in terms of geometric requirements on the meshes of the domain of the differential equation, and provide a general way to investigate the mesh geometric requirements for arbitrary higher-order schemes. Several useful examples of higher-order finite volume methods are presented to illustrate the mesh geometric requirements.  相似文献   

10.
A general superconvergence result of finite volume method for the Stokes equations is obtained by using a L2 projection post‐processing technique. This superconvergence result can be applied to different finite volume methods and to general quasi‐uniform meshes.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009  相似文献   

11.
Two-grid finite volume element methods, based on two linear conforming finite element spaces on one coarse grid and one fine grid, are presented and studied for two-dimensional semilinear parabolic problems. With the proposed techniques, solving the nonsymmetric and nonlinear system on the fine space is reduced to solving a symmetric and linear system on the fine space and solving the nonsymmetric and nonlinear system on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. It is proved that the coarse grid can be much coarser than the fine grid. As a result, solving such a large class of semilinear parabolic problems will not be much more difficult than solving one single linearized equation. In the end a numerical example is presented to validate the usefulness and efficiency of the method.  相似文献   

12.
Recently, new higher order finite volume methods (FVM) were introduced in [Z. Cai, J. Douglas, M. Park, Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Adv. Comput. Math. 19 (2003) 3-33], where the linear system derived by the hybridization with Lagrange multiplier satisfying the flux consistency condition is reduced to a linear system for a pressure variable by an appropriate quadrature rule. We study the convergence of an iterative solver for this linear system. The conjugate gradient (CG) method is a natural choice to solve the system, but it seems slow, possibly due to the non-diagonal dominance of the system. In this paper, we propose block iterative methods with a reordering scheme to solve the linear system derived by the higher order FVM and prove their convergence. With a proper ordering, each block subproblem can be solved by fast methods such as the multigrid (MG) method. The numerical experiments show that these block iterative methods are much faster than CG.  相似文献   

13.
High order finite volume methods for singular perturbation problems   总被引:2,自引:0,他引:2  
In this paper we establish a high order finite volume method for the fourth order singular perturbation problems.In conjunction with the optimal meshes,the numerical solutions resulting from the method have optimal convergence order.Numerical experiments are presented to verify our theoretical estimates.  相似文献   

14.
Summary The boundary-value problem for rods having arbitrary geometry, and subjected to arbitrary loading, is studied within the context of the small-strain theory. The basic assumptions underlying the rod kinematics are those corresponding to the Timoshenko hypotheses in the plane rectilinear case: that is, plane sections normal to the line of centroids in the undeformed state remain plane, but not necessarily normal. The problem is formulated in both the standard and mixed variational forms, and after establishing the existence and uniqueness of solutions to these equivalent problems, the corresponding discrete problems are studied. Finite element approximations of the mixed problem are shown to be stable and convergent. It is shown that the equivalence between the mixed problem and the standard problem with selective reduced integration holds only for the case of rods having constant curvature and torsion, though. The results of numerical experiments are presented; these confirm the convergent behaviour of the mixed problem.  相似文献   

15.
A given elliptic boundary problem can, in general, be approximated by several different mixed finite element methods, depending on what physical unknowns are most desired. The use of certain mixed methods for time-dependent problems has been proposed by Johnson and Thomee [5]. We analyze here some additional mixed methods for the time-dependent case which can be used to obtain direct approximations to alternate physical quantities of interest.  相似文献   

16.
In this article, we propose and study different mixed variational methods in order to approximate the Signorini problem with friction using finite elements. The discretized normal and tangential constraints at the contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle?point formulation. A priori error estimates are established and several numerical examples corresponding to the different choices of the discretized normal and tangential constraints are carried out. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

17.
热传导型半导体器件的瞬时状态由四个方程的非线性偏微分方程组的初边值问题所决定,其中电子位势方程是椭圆型的,电子和空穴浓度方程是对流扩散型的,温度方程为热传导型的。本文提出解这类问题的特征变网格有限元法,并进行了理论分析,在一定条件下,得到了某种意义下的最佳L^2误差估计结果。  相似文献   

18.
We consider the lowest-order Raviart–Thomas mixed finite element method for elliptic problems on simplicial meshes in two or three space dimensions. This method produces saddle-point type problems for scalar and flux unknowns. We show how to easily eliminate the flux unknowns, which implies an equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. We describe the stencil of the final matrix and give sufficient conditions for its symmetry and positive definiteness. We present a numerical example illustrating the performance of the proposed method. To cite this article: M. Vohralík, C. R. Acad. Sci. Paris, Ser. I 339 (2004).  相似文献   

19.
A procedure for evaluating the dynamic structural response of elastic solid domains is presented. A prerequisite for the analysis of dynamic fluid–structure interaction is the use of a consistent set of finite volume (FV) methods on a single unstructured mesh. This paper describes a three-dimensional (3D) FV, vertex-based method for dynamic solid mechanics. A novel Newmark predictor–corrector implicit scheme was developed to provide time accurate solutions and the scheme was evaluated on a 3D cantilever problem. By employing a small amount of viscous damping, very accurate predictions of the fundamental natural frequency were obtained with respect to both the amplitude and period of oscillation. This scheme has been implemented into the multi-physics modelling software framework, Physica, for later application to full dynamic fluid structure interaction.  相似文献   

20.
Summary. The eigenvalue problem describing the frequencies of a fluid vibrating in a rigid cavity or within moving boundaries is considered. Based on the method of Lagrange multipliers, a three field mixed formulation is introduced in order to avoid the spurious circulating modes. Stability and optimal error bounds are proved for two choices of finite element spaces. Received October 20, 1992 / Revised version received May 23, 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号