首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the compatibilizing performance of a random copolymer in the melt state, using transmission electron microscopy. Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) are chosen as a model system, and a random copolymer of styrene and methyl methacrylate (SMMA) with 70 wt % styrene is used as a compatibilizer. From TEM photographs it is clear that SMMA moves to the interface between PS and PMMA domains during melt mixing, and forms encapsulating layers. However, the characteristic size of the dispersed phase increases gradually with annealing time for all blend systems studied. This demonstrates that the encapsulating layer of SMMA does not provide stability against static coalescence, which calls into question the effectiveness of random copolymers as practical compatibilizers. We interpret the encapsulation by random copolymers in terms of a simple model for ternary polymer blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2835–2842, 1997  相似文献   

2.
Anionic poly(p‐phenylene‐ethynylene) (PPE) incorporated polymer hybrids were synthesized from the PPE and tetramethoxysilane together with the organic polymers such as poly(vinylpyrrolidone) via a sol–gel method. Up to 10 wt % of the anionic PPE could be dispersed homogeneously in the resulting polymer hybrid matrix. The obtained polymer hybrids exhibited controllable photoluminescence properties by the modification of the internal environment of organic–inorganic polymer hybrids by changing the organic/inorganic ratios. The photoluminescence of the anionic PPE surrounded by the polymer hybrid matrix was reinforced against the thermal irradiation. Moreover, the photoluminescence of the obtained organic–inorganic polymer hybrids was also tuned by utilizing ionic interactions between the anionic PPE and the inorganic matrix. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3749–3755, 2008  相似文献   

3.
The stability against the thermal annealing of a cocontinuous two‐phase morphology developed in polystyrene (PS)/low‐density polyethylene (LDPE) blends containing 80 wt % PS was investigated. Blends containing 1, 5, and 10 wt % of a tapered diblock poly(styrene‐block‐hydrogenated butadiene) (P(S‐b‐hB)) or triblock poly(styrene‐block‐hydrogenated butadiene‐block‐styrene) (P(S‐hB‐S)) copolymer were melt‐blended with roll‐mill mixing equipment. The efficiency of each of the two copolymers in stabilizing against coalescence the cocontinuous morphology was examined. The tensile properties of the resulting blends, annealed and nonannealed, were also examined in relation to the morphology induced by thermal annealing. The phase morphology was studied by optical and scanning electron microscopy. With computer‐aided image analysis, it was possible to obtain a measurable characteristic parameter to quantify the cocontinuous phase morphology. When it was necessary, the extraction of one phase with a selective solvent was performed. Although the observed differences were subtle, the tapered diblock exhibited a more efficient compatibilizing activity than the triblock copolymer, particularly at a low concentration of about 2 wt %. The superiority of the tapered diblock over the triblock might be due to its ability to quantitatively locate at the LDPE/PS interface and consequently form a more efficient barrier against the subsequent breakup of the elongated structures of the cocontinuous phase morphology. The tensile properties of the triblock‐modified blends were more sensitive to thermal annealing than the tapered‐modified ones. This deficiency was ascribed to the phase morphology coarsening of the dispersed polyethylene phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 202–216, 2003  相似文献   

4.
Gas transport properties are reported for two series of films prepared from initially miscible thermoplastic/thermoset blends, respectively, polystyrene PS/thermoset and poly(2,6 dimethyl 1,4 phenylene oxide) PPE/thermoset blends. The thermoplastic contents are such that in both cases, after the phase separation, the continuous phase is the thermoplastic‐rich phase and scanning electron microscopic photomicrographs clearly evidenced the dispersion of thermoset‐rich nodules in the continuous thermoplastic‐rich phase with a more tortuous morphology in the case of PPE based films. Permeability measurements were made for O2 and CO2 at 20°C and a reduction in permeability coefficients was observed with increased thermoset content. Analysis using Maxwell law suggests that for all thermoplastic/thermoset blends, the thermoset particles can be considered as impermeable to gas and that the diffusion takes place in the continuous phase. In the case of PPE based films, the higher decrease of permeability than that predicted by the law has been related to the morphology of the blends and thus the tortuosity and to a partial miscibility of the thermoset in the thermoplastic. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 473–483, 1999  相似文献   

5.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

6.
Blends of a tetrafunctional epoxy resin, tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM), and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3′‐diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS‐cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS‐cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP‐rich particles are dispersed in the continuous cured epoxy‐rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 417–424, 2010  相似文献   

7.
The effect of glass beads (GB) on morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends has been studied by scanning electron microscopy (SEM) at different shear rates and during quiescent annealing. For the viscosity ratio of PMMA to PS greater than unity, the dispersed viscous PMMA phase in the blend coalesced during the shear flow or quiescent annealing. However, the domain size of the PMMA phase decreased significantly under shear even though a small amount of GB was added. The PMMA domain size further decreased and the size distribution became narrower with increasing GB content. According to SEM images, the quiescent coalescence of the PMMA phase was effectively inhibited by adding large amounts of GB, and the breakup of PMMA domains in shear flow was greatly favored by the high local shear prevailed between GB. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 25–35, 2009  相似文献   

8.
Blends of polystyrene/poly(methyl methacrylate) (PS/PMMA) (30/70) prepared by simple melt mixing form a droplet (PS) in‐matrix (PMMA) morphology. It is found that addition of a carefully designed copolymer PS‐b‐P(S‐ran‐MMA) (SSM) compatibilizer could convert the morphology into a co‐continuous system. Indeed, the continuity of the dispersed PS phase increased with an increase in PS‐b‐P(S‐ran‐MMA) content, and a fully co‐continuous morphology (continuity = 100%) was obtained at 20% SSM fraction with a characteristic size of 100 nm.

  相似文献   


9.
Blends of poly(carbonate of bisphenol A) (PC) with minute amounts of a nanocomposite based in polyamide 6 (PA6) with a layered organoclay (nPA6) were obtained upon melt mixing by varying the contents of both nPA6 and organoclay. The ternary nanocomposites (NC) were composed of a PC-rich matrix with some mixed PA6 present, and by a neat nPA6 dispersed phase. Upon dissolution of the matrix of the NC’s, the dispersed phase showed a highly fibrillar morphology that resembled that of thermoplastic/liquid crystalline polymer (LCP) blends. The cryogenically fractured surfaces observed by SEM showed a very fine particle size that was attributed to the presence of PA6 in the matrix and indicated a low interfacial tension. The Young’s modulus behaviour is proposed to be a consequence of the slight orientation of the PC-rich matrix and the highly fibrillated and oriented nPA6 dispersed phase. The important reinforcement effect of the dispersed phase is attributed to the additive effects of its large degree of orientation, and the reinforcing effect of the organoclay.  相似文献   

10.
The influence of physical aging on the electret properties before corona charging of three amorphous polymers, polyetherimide (PEI), poly(phenylene ether) (PPE), and polystyrene (PS), as well as with blends of PPE and PS, was investigated. The degree of aging was monitored by determining the enthalpy relaxation Δh using differential scanning calorimetry (DSC). The electret performance was evaluated by isothermal potential decay (ITPD) at elevated temperatures and by thermal stimulated discharge (TSD) measurements. It was demonstrated that physical aging below the glass transition temperature substantially improves the electret performance of amorphous polymers by reducing the free volume and thus hindering charge motion. As an example, the performance of nonaged PEI was improved by physical aging at 200 °C for 4 days from 18 to 95% retained charge after 24 h at 120 °C. A similar beneficial influence of physical aging on the charge storage capability was achieved using blends of PPE with PS. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 990–997, 2010  相似文献   

11.
The influence of nanosilica on the concentration fluctuation of polystyrene/poly (vinyl methyl ether) (PS/PVME) mixtures was investigated during phase separation. The amplitude of concentration fluctuation was quantified by dielectric spectrums based on the idea of Lodge–Mcleish model and the linearized Cahn–Hilliard theory could describe the amplitude evolution of concentration fluctuation at the early stage of phase separation. Hydrophilic nanosilica A200 dispersed in PVME‐rich phase behaved an obvious inhibition effect on the concentration fluctuation of blend matrix, while hydrophobic nanosilica R974 dispersed in PS‐rich phase had little effect on the concentration fluctuation. The kinetics and amplitude evolution of concentration fluctuation during phase separation for PS/PVME/A200 nanocomposites were remarkably restrained due to the surface adsorption of PVME on A200. As the segmental dynamics of PVME and PS in homogeneous matrix was hardly influenced by A200 and R974, the enhanced miscibility and the significantly constrained flow relaxation of PVME chains might contribute to the retarded concentration fluctuation of PS/PVME/A200 nanocomposites. While the weak interaction between R974 and components of blend matrix and little effect of R974 on the molecular dynamics of PS chains may result in the weak retardation of concentration fluctuation for blend matrix. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1337–1349  相似文献   

12.
The effect of a small admixture of high‐density polyethylene (HDPE) with a high or low viscosity to polystyrene/polyamide (PS/PA) blends of various compositions was studied. PS/PA blends with composition near 50/50 form sheet‐like or fiber‐like morphology at mixing that passes to the cocontinuous structure during compression molding. Ternary PS/PA/HDPE blends with PS/PA ratio about 50/50 show similar behavior. Generally, neither continuity nor shape of PS and PA phases was changed qualitatively by the addition of a small amount of HDPE. In agreement with existing rules for ternary blends, HDPE particles prefer a contact with PS phase to PA phase. On the other hand, none of these rules explains why a number of small HDPE subinclusions were dispersed into PS particles instead of HDPE‐PS core‐shell structure with a lower Gibbs free energy. Quantitative evaluation of the size of PA particles in blends with PS matrix showed that the previously proposed rule stating, that the addition of a small amount of a third immiscible component leads to a strong decrease in the size of dispersed particles, was not valid for the blends studied in this work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2158–2170, 2009  相似文献   

13.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

14.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

15.
True model linear poly(styrene‐b‐dimethylsiloxane) PS‐b‐PDMS copolymers were synthesized by using sequential addition of monomers and anionic polymerization (high‐vacuum techniques), employing the most recent experimental procedures that allow the controlled polymerization of each monomer to obtain blocks with controlled molar masses. The model diblock copolymers obtained were analyzed by using different techniques, such as size‐exclusion chromatography, 1H NMR, Fourier transform infrared spectroscopy, small angle X‐rays scattering (SAXS), and wide angle X‐rays scattering (WAXS). The PS‐b‐PDMS copolymers obtained showed narrow molar mass distribution and variable PDMS content, ranging from 2 up to 55 wt %. Compacted powder samples were investigated by SAXS to reveal their structure and morphology changes on thermal treatment in the interval from 30 to 200 °C. The sample with the highest PDMS content exhibits a lamellar morphology, whereas two other samples show hexagonally packed cylinders of PDMS in a PS matrix. For the lowest PDMS content samples, the SAXS pattern corresponds to a disordered morphology and did not show any changes on thermal treatment. Detailed information about the morphology of scattering domains was obtained by fitting the SAXS scattering curves. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3119–3127, 2010  相似文献   

16.
In this article, the preparation of nanosized core-shell particles to induce ductility in polystyrene (PS) is described. FTIR spectroscopy, solid-state NMR spectroscopy, and DSC were used to examine the extent of miscibility of PS and poly(butylacrylate)-b-polyolefin diblock copolymers in a blend in which PS was chemically modified by copolymerization with 0.5–5 mol % of p-(hexafluoro-2-hydroxy isopropyl) styrene (HFS). Hydrogen bonding between the hydroxyl-groups and the carbonyl-groups of polybutylacrylate enhanced the miscibility and lead to randomly distributed polyolefin particles surrounded by a homogeneous PBA/PS matrix. Morphological parameters such as the size of the dispersed phase or extent of interpenetration between the components are controllable simply by changing the amount of interacting groups in the blend. The mechanical properties of the prepared blends were also studied. The intrinsic deformation behavior was investigated by compression tests, whereas the microscopic mode of deformation was studied by time-resolved small-angle X-ray scattering. It was shown that the macroscopic strain at break depends to a large extent on the diblock copolymer content and the degree of demixing between the rubber shell and PS matrix. Brittle behavior was observed for PS blends that contain more than 3 mol % HFS and show complete miscibility between the PS matrix and acrylate shell. For the blends showing partial miscibility, the compression tests demonstrated a pronounced decrease in strain softening with increasing diblock copolymer concentration. Furthermore, it was illustrated that dependent on the degree of demixing the microscopic deformation mode changes from crazing to cavitation induced shear yielding. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2137–2160, 2004  相似文献   

17.
Both di- and triblock copolymers consisting of polystyrene (PS) in conjunction with poly(methylphenylsilane) (PMPS) have been successfully prepared by coupling of α,ω-dichloro-PMPS with poly(styryllithium). The study of this reaction has shown a sudden limitation of the coupling yield, which however depends on the PS block length. Both the polymer concentration and the solvent have also an effect on the coupling reaction. Morphology of the PS-PMPS block copolymers has been observed by transmission electron microscopy. Very complex morphologies have been reported more likely as the result of the competition between the phase separation induced by PS and PMPS immiscibility and the tendency of PMPS to form ordered structures. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1939–1948, 1997  相似文献   

18.
The morphology transition of binary mixtures of polystyrene‐block‐poly(butadiene)‐block‐poly(2‐vinylpyridine)(SBV) triblock and polystyrene (PS) homopolymer thin films was investigated as a function of the volume fraction of added homopolymer and the annealing time in benzene vapor. It was found that the weight ratio of PS in the blends influenced the transition process. When PS content was >5%, the order‐order transition (OOT) of core‐shell cylinders (C) →sphere in “diblock Gyroid” (sdG) → sphere in lamella (sL) → sphere (S) was observed, which was similar to ABC triblock copolymer except for the increased surface area of the PS phase. When PS content reached to 10–30%, the OOT in the sequence of C → sL → S was observed. The disappearance of the Gyroid phase is due to the change of the effective volume fraction. Further increasing the PS content, C phase also disappeared and sL → S was expected to take place. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2014 , 52, 1030–1036  相似文献   

19.
Poly(butylene terephthalate) (PBT)/styrene‐acrylonitrile copolymer (SAN) blends were investigated with respect to their phase morphology. The SAN component was kept as dispersed phase and PBT as matrix phase and the PBT/SAN viscosity ratio was changed by using different PBT molecular weights. PBT/SAN blends were also compatibilized by adding methyl methacrylate‐co‐glycidyl methacrylate‐co‐ethyl acrylate terpolymer, MGE, which is an in situ reactive compatibilizer for melt blending. In noncompatibilized blends, the dispersed phase particle size increased with SAN concentration due to coalescence effects. Static coalescence experiments showed evidence of greater coalescence in blends with higher viscosity ratios. For noncompatibilized PBT/SAN/MGE blends with high molecular weight PBT as matrix phase, the average particle size of SAN phase does not depend on the SAN concentration in the blends. However noncompatibilized blends with low molecular weight PBT showed a significant increase in SAN particle size with the SAN concentration. The effect of MGE epoxy content and MGE molecular weight on the morphology of the PBT/SAN blend was also investigated. As the MGE epoxy content increased, the average particle size of SAN initially decreased with both high and low molecular weight PBT phase, thereafter leveling off with a critical content of epoxy groups in the blend. This critical content was higher in the blends containing low molecular weight PBT than in those with high molecular weight PBT. At a fixed MGE epoxy content, a decrease in MGE molecular weight yielded PBT/SAN blends with dispersed nanoparticles with an average size of about 40 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

20.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号