首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon monoxide (CO) and norbornadiene (NBD) with Pd(CH3CN)4(BF4)2 were copolymerized under various conditions at 50°C. Elemental analysis, infrared spectra, UV, Raman, and NMR spectra showed that the copolymers contained both ketone and unsaturated ring structures. Bidentate nitrogen ligands and phosphorus ligands proved to be more effective at stabilizing catalytic activity than monodentate arsenic ligands or phosphorus ligands. Methanol, protic acid, and an oxidant served as the coinitiator and chain transfer agent, respectively. X-ray diffraction analysis showed the copolymer to be partially crystalline. Thermogravimetric analysis showed that the TG curve for the NBD/CO copolymer has two stages with two maxima peaks at 251 and 470°C. This phenomenon was probably due to increased instability of the copolymers as CO content is increased. Hydrogenation of norbornadiene/CO copolymer with LiAlH4 and Pd/C in THF yields a hydroxyl-containing polymer and norbornene/CO copolymer, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1157–1166, 1997  相似文献   

2.
A novel copolymer of vinylidene cyanide (VCN) and 2,2,2‐trifluoroethyl methacrylate (MATRIF) was synthesized by bulk free radical process in a 52% yield from an equimolar comonomer feed. The copolymer's composition and microstructure were analyzed by FTIR, 1H‐ and 13C‐NMR spectroscopy, SEC, and elemental analysis. The reactivity ratios calculated from both the Q‐e Alfrey‐Price parameters and the Jenkins' Patterns Scheme indicate a tendency to alternation in the copolymerization, the latter method suggesting that MATRIF homopropagation be slightly favoured (rV = r12 = 0.1, rM = r21 = 0.3). The molar incorporation of VCN in the copolymer was only 42 mol % according to the 9.0 wt % nitrogen content determined by elemental analysis, in good agreement with the value obtained by 1H‐NMR. High‐resolution 1H and 13C‐NMR spectra were used to study the microstructure of the copolymer. As an example, the three well‐resolved carbonyl resonances in the 13C‐NMR spectrum were assigned to the MATRIF‐centered triads VMV, VMM, and MMM, respectively, (V and M stand for VCN and MATRIF, respectively). The presence of VCN dyads (e.g., in VVM and VVV sequences) was shown to be marginal or absent altogether. Thermogravimetric analysis of poly(VCN‐co‐MATRIF) copolymer showed good thermal stability, and its main pyrolytic degradation taking place only above 368 °C. A 4% weight loss at about 222 °C suggested the presence of a few VCN homodyads, possibly inducing thermal depolymerization. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
MgCl2/THF/TiCl4 (TT-0) were thermally pretreated at 80°C for 5 min (TT-1) and 60 min (TT-2), and at 108°C for 5 min (TT-3) and 60 min (TT-4). These thermally pretreated catalysts showed comonomer enhancement effects in the ethylene-1-hexene copolymerization, while TT-0 catalyst did not. Comonomer enhancement effect of thermally pretreated catalysts could come from the generation of new active sites and change of its nature after heat treatment. 1-Hexene content in copolymer obtained with TT-1 was higher than those of TT-4 and TT-0. The morphology of homopolyethylene (PE) obtained with TT-1, 2, 3, and 4 was more regular and homogeneous than that of TT-0. This result could be due to the generation of active sites and change of its nature after thermal treatment of bimetallic catalyst. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2769–2776, 1997  相似文献   

4.
A miscible homopolymer–copolymer pair viz., poly(ethyl methacrylate) (PEMA)–poly(styrene‐co‐butyl acrylate) (SBA) is reported. The miscibility has been studied using differential scanning calorimetry. While 1 : 1 (w/w) blends with SBA containing 23 and 34 wt % styrene (ST) become miscible only above 225 and 185 °C respectively indicating existence of UCST, those with SBA containing 63 wt % ST is miscible at the lowest mixing temperature (i.e., Tg's) but become immiscible when heated at ca 250 °C indicating the existence of LCST. Miscibility for blends with SBA of still higher ST content could not be determined by this method because of the closeness of the Tg's of the components. The miscibility window at 230 °C refers to the two copolymer compositions of which one with the lower ST content is near the UCST, while the other with the higher ST content is near the LCST. Using these compositions and the mean field theory binary interaction parameters between the monomer residues have been calculated. The values are χST‐BA = 0.087 and χEMA‐BA = 0.013 at 230 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 369–375, 2000  相似文献   

5.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

6.
The γ-radiation-induced free-radical copolymerization of ethylene and CO has been investigated over a wide range of pressure, initial gas composition, radiation intensity, and temperature. At 20°C., concentrations of CO up to 1% retard the polymerization of ethylene. Above this concentration the rate reaches a maximum between 27.5 and 39.2% CO and then decreases. The copolymer composition increases only from 40 to 50% CO when the gas mixture is varied from 5 to 90% CO. A relatively constant reactivity ratio is obtained at 20°C., indicating that CO adds 23.6 times as fast as an ethylene monomer to an ethylene free-radical chain end. For a 50% CO gas mixture, the above value of 23.6 and the copolymerization rate decrease with increasing temperature to 200°C. The kinetic data indicate a temperature-dependent depropagation reaction. Infrared examination of copolymers indicates a polyketone structure containing ? CH2? CH2? and ? CO? units. The crystalline melting point increases rapidly from 111 to 242°C., as the CO concentration in the copolymer increases from 27 to 50%. Molecular weight of copolymer formed at 20°C. increased with increasing CO, indicating M?n values >20,000. Increasing reaction temperature results in decreasing molecular weight. Onset of decomposition for a 50% CO copolymer was measured at ≈250°C.  相似文献   

7.
Two new bis(ether acyl chloride)s, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenylethane and 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane, were prepared from readily available reagents. Aromatic polybenzoxazoles with both ether and phenylethylidene or 1‐phenyl‐2,2,2‐trifluoroethylidene linkages between phenylene units were obtained by a conventional two‐step procedure including the low‐temperature solution polycondensation of the bis(ether acyl chloride)s with three bis(o‐aminophenol)s, yielding poly(o‐hydroxyamide) precursors, and subsequent thermal cyclodehydration. The intermediate poly(o‐hydroxyamide)s exhibited inherent viscosities of 0.39–0.98 dL/g. All of the poly(o‐hydroxyamide)s were amorphous and soluble in polar organic solvents such as N,N‐dimethylacetamide, and most of them could afford flexible and tough films via solvent casting. The poly(o‐hydroxyamide)s exhibited glass‐transition temperatures (Tg's) of 129–194 °C and could be thermally converted into corresponding polybenzoxazoles in the solid state at temperatures higher than 300 °C. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility with to respect to their poly(o‐hydroxyamide) precursors. They exhibited Tg's of 216–236 °C through differential scanning calorimetry and were stable up to 500 °C in nitrogen or air, with 10% weight‐loss temperatures being recorded between 538 and 562 °C in nitrogen or air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 914–921, 2003  相似文献   

8.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

9.
Copolymerization of 2-acrylamido-2-methylpropane sulfonic acid (AMPS, monomer 1) with 2-hydropropyl methacrylate (HPM, monomer 2) was conducted in ethylene glycol/water (1 : 1 in weight) at 70°C. The reactivity ratios estimated from the copolymer composition at low conversion are r1 = 2.31 ± 0.25 and r2 = 11.70 ± 1.05. The azeotropic composition was found at the monomer mole ratio AMPS/HPM equal to 8/2. Viscosity of these copolymers was measured in dimethyl sulfoxide (DMSO) and DMSO/tetrahydrofuran (THF) mixed solvent at 25 ± 0.05°C. Polyelectrolyte behavior was observed for all the copolymers, even in the mixed solvent containing 65 wt % of THF. The reduced viscosity at constant polymer concentration decreased with increasing THF content in the mixed solvent. The copolymers having AMPS repeat units more than 42 mol % precipitated in the mixed solvent when the THF was beyond 68 wt %. The viscosity reduction and precipitation in the copolymer solutions with increasing THF can be attributed to the dipole–dipole attraction between ion-pairs formed in less-polar medium. This is helpful in understanding the volume phase transition in highly charged hydrogels caused by mixing solvents. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1433–1438, 1997  相似文献   

10.
High‐molecular‐weight poly(phthalazinone)s with very high glass‐transition temperatures (Tg's) were synthesized via a novel N–C coupling reaction. New bisphthalazinone monomers ( 7a–e ) were synthesized from 2‐(4‐chlorobenzoyl) phthalic acid in two steps. Poly(phthalazinone)s, having inherent viscosities in the range of 0.34–0.91 dL/g, were prepared by the reaction of the bis(phthalazinone) monomers with an activated aryl halide in a dipolar aprotic solvent in the presence of potassium carbonate. The poly(phthalazinone)s exhibited Tg's greater than 230 °C. polymer 8b synthesized from diphenyl biphenol and bis(4‐flurophenyl) sulfone demonstrated the highest Tg of 297 °C. Thermal stabilities of the poly(phthalazinone)s were determined by thermogravimetric analysis. All the poly(phthalazinone)s showed a similar pattern of decomposition with no weight loss below 450 °C in nitrogen. The temperatures of 5% weight loss were observed to be about 500 °C. The poly(phthalazinone)s containing 4,4′‐isopropylidenediphenol and 4,4′‐(hexafluoroisopropylidene) diphenol and diphenyl ether linkage were soluble in chlorinated solvents such as chloroform. Other poly‐(phthalazinone)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(phthalazinone)s can be cast as flexible films from solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2481–2490, 2003  相似文献   

11.
A bis(ether anhydride) monomer, 1,1‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]cyclohexane dianhydride ( IV‐A ), was synthesized from the nitro displacement of 4‐nitrophthalodinitrile by the phenoxide ion of 1,1‐bis(4‐hydroxyphenyl)cyclohexane ( I‐A ), followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and dehydration of the resulting bis(ether acid). A novel series of organosoluble poly(ether imide)s ( VI a–i )(PEIs) bearing cyclohexylidene cardo groups was prepared from the bis(ether anhydride) IV‐A with various aromatic diamines V a–i via a conventional two‐stage process. The PEIs had inherent viscosities in the range of 0.48–1.02 dL/g and afforded flexible and tough films by solution‐casting because of their good solubilities in organic solvents. Most PEIs showed yield points in the range of 89–102 MPa at stress‐strain curves and had tensile strengths of 78–103 MPa, elongations at breaks of 8–62%, and initial moduli of 1.8–2.2 GPa. The glass‐transition temperatures (Tg's) of these PEIs were recorded between 200–234 °C. Decomposition temperatures of 10% weight loss all occurred above 490 °C in both air and nitrogen atmospheres, and their residues were more than 43% at 800 °C in nitrogen atmosphere. The cyclohexane cardo‐based PEIs exhibited relatively higher Tg's, better solubilities in organic solvents, and better tensile properties as compared with the corresponding Ultem® PEI system. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 788–799, 2001  相似文献   

12.
Chain‐growth condensation polymerization of p‐aminobenzoic acid esters 1 bearing a tri(ethylene glycol) monomethyl ether side chain on the nitrogen atom was investigated by using lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. The methyl ester monomer 1a afforded polymer with low molecular weight and a broad molecular weight distribution, whereas the polymerization of the phenyl ester monomer 1b at ?20 °C yielded polymer with controlled molecular weight (Mn = 2800–13,400) and low polydispersity (Mw/Mn = 1.10–1.15). Block copolymerization of 1b and 4‐(octylamino)benzoic acid methyl ester ( 2 ) was further investigated. We found that block copolymer of poly 1b and poly 2 with defined molecular weight and low polydispersity was obtained when the polymerization of 1b was initiated with equimolar LiHMDS at ?20 °C and continued at ?50 °C, followed by addition of 2 and equimolar LiHMDS at ?10 °C. Spherical aggregates were formed when a solution of poly 1b in THF was dropped on a glass plate and dried at room temperature, although the block copolymer of poly 1b and poly 2 did not afford similar aggregates under the same conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1357–1363, 2010  相似文献   

13.
2,3,4,5,6‐Pentafluoro and 4‐trifluoromethyl 2,3,5,6‐tetrafluoro styrenes were readily copolymerized with methyl methacrylate (MMA) by a free radical initiator. The copolymers were soluble in tetrahydrofuran and acetone. The films obtained were transparent and flexible. The glass transition temperatures (Tgs) of the copolymers were found positively deviated from the Gordon–Taylor equation. The positive deviation could be accounted for by dipole–dipole intrachain interaction between the methyl ester group of MMA and the highly fluorinated aromatic moiety, which resulted in a decrease in the segmental mobility of the polymer chains and the enhanced Tg values of the copolymers. The water absorption of PMMA was greatly decreased by copolymerization of MMA with the highly fluorinated styrenes. With as little as 10 mol % of pentafluoro styrene content in the copolymer, the water absorption was decreased to one‐third of that for pure PMMA. The fluorinated styrenes‐MMA copolymers were thermally stable up to 420 °C under air and nitrogen atmospheres. With 50 mol % of MMA in the copolymer, the copolymer was still stable up to 350 °C. Since these copolymers contain a large number of fluorine atoms, the light absorption in the region of the visible to near infrared is decreased in comparison with nonfluorinated polymers. Thus, these copolymers may be suitable for application in optical devices, such as optical fibers and waveguides. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Copolymerization of carbon monoxide with 1,3-cyclopentadiene (CPD) by palladium complexes, [Pd(CH3CN)4?n (PPh3)n] (BF4)2, n = 1–3 (especially n = 1), was studied at 60°C. Results of elementary analysis, infrared spectra, and NMR spectra showed that copolymers containing ketone and ring structures were produced. Phosphorus compounds such as PPh3 were found to be more effective stabilizing ligands for the catalytic activity compared to arsenic or nitric ligands. A higher activity of the catalyst for the copolymerization of CPD with carbon monoxide was observed in noncoordinating solvents such as CHCl3 even at a pressure as low as 300 psi. The amount of 1,2 structure for the CPD-CO copolymer increased as the polarity of solvent increased. The copolymer was confirmed to be partially crystalline by the x-ray diffraction. TGA shows that weight loss of copolymer starts at 120°C and the maximum peak of decomposition occurs at 469°C. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Tert-butyl and di-tert-butyl were added as pendant groups to the ether-ether phenyl ring of poly(ether ether ketone), PEEK. tert-butyl PEEK, TBPEEK, was amorphous and di-tert-butyl PEEK, DBPEEK, was semicrystalline. However, a 2 : 1 random copolymer of TBPEEK and DBPEEK, TBDBPEEK, was amorphous. Gas transport of N2, O2, CH4, and CO2 through amorphous films of PEEK, TBPEEK, TBDBPEEK, and tetramethylbiphenyl PEEK were determined at 35°C and at pressures to about 15 atm. The results support previous observations that tert-butyl and tetramethylbiphenyl groups are very effective in disrupting chain packing in the polymer. For the present polymers, these substitutions led to a 5–18-fold increase in permeability, and, in some cases, at no loss in permselectivity. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2355–2362, 1997  相似文献   

16.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

17.
Poly(arylene ether)s ( 3 ), ( 4 ) containing pendant benzoyl groups as precursors for novel polyxanthenes ( 7 ), ( 8 ) were prepared by nucleophilic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone ( 1 ) or 2,5-difluoro-4-(4-dodecylbenzoyl)-4′-dodecylbenzophenone ( 2 ) with hydroquinone derivatives in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.80 dL/g. The novel polyxanthenes were synthesized via the reduction of poly(arylene ether)s followed by the Friedel-Crafts cyclization of diol polymers. The structure of the polyxanthenes was characterized by 1H-NMR and IR spectroscopies. Polyxanthene 8 was quite soluble in chloroform and THF. The 10% weight loss temperature of polyxanthene 7 was 510°C in nitrogen and it was 90°C higher than the corresponding poly(arylene ether) 3 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2267–2272, 1997  相似文献   

18.
The interdiffusion and miscibility behavior of three different types of modified poly(arylether sulfone)s with deuterated poly(arylether sulfone) is studied by depth profiling using the nuclear reaction D(3He, α)p. The diffusion coefficients are found to be in the range of 10−15 and 10−14 cm2/s at 195°C. A random copolymer of poly(arylether sulfone) containing 4,4-bis-(4′-hydroxyphenyl)valeric acid units is only partially miscible with deuterated poly(arylether sulfone) when the comonomer content is 8.8 mol %, whereas blends with comonomer contents of 1.7 and 4.5 mol % are miscible as indicated by complete interdiffusion. The transition from miscibility to immiscibility is caused by repulsive interactions of copolymer segments and can be explained in terms of a mean-field theory of random copolymer blends. Also, poly(arylether sulfone)s grafted with 0.4 wt % maleic anhydride or having pyromellitic anhydride endgroups are miscible with deuterated poly(arylether sulfone)s. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2083–2091, 1997  相似文献   

19.
Cationic ring-opening polymerization behavior of a seven-membered cyclic sulfite ( 1 ) was examined. 1 was prepared by the reaction of 1,4-butanediol with SOCl2 in 58% yield. The cationic polymerization of 1 was carried out at 0, 25, 60, or 100°C with trifluoromethanesulfonic acid (TfOH), methyl trifluoromethanesulfonate (TfOMe), BF3 · OEt2, SnCl4, methyl p-toluenesulfonate (TsOMe), or MeI as an initiator in bulk under a nitrogen atmosphere to afford the polymer with M̄n 1000–10,400. The order of activities of the initiators for 1 was as follows, TfOH ≅ TfOMe > SnCl4 > BF3 · OEt2 > TsOMe ≅ MeI. The polymerization of 1 with TfOMe afforded a poly(sulfite) below 25°C, but afforded a polymer containing an ether unit at 60°C, which was formed by a desulfoxylation. The higher the activity of the initiator was, the more easily the desulfoxylation occurred. We expected volume expansion on polymerization because cyclic sulfites have large dipole moment values, but it turned out that 1 showed 4.34% shrinkage on polymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3673–3682, 1997  相似文献   

20.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号