首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(cyanurate)s (P‐1–P‐4) containing triazine groups in the main chain and pendant chloromethyl groups in the side chain were synthesized by the polyaddition of bis(epoxide)s with 2,4‐dichloro‐6‐(diphenylamino)‐s‐triazine (DPAT) using quaternary onium salts as catalysts. The polyaddition of diglycidyl ether of bisphenol‐A (DGEBA) with DPAT proceeded smoothly in chlorobenzene at 100 °C for 12 h to give P‐1 with Mn = 19,000 in a 92% yield, when tetrabutylammonium chloride (TBAC) was used as a catalyst. However, no reaction occurred without a catalyst or with triethylamine alone under the same reaction conditions. Polyadditions of other bis(epoxide)s with DPTA also proceeded smoothly using 5 mol % of TBAC as a catalyst in chlorobenzene to produce corresponding polymers (P‐2≈P‐4) in high yields under similar reaction conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4006–4012, 2000  相似文献   

2.
Poly(ether)s (P‐1–P‐4) containing triazine groups in the main chain and pendant phenoxy groups in the side chain were synthesized by the polyaddition of bis(epoxide)s with 2,4‐di‐(p‐chlorophenoxy)‐6‐(diphenylamino)‐s‐triazine (DCTA) with quaternary onium salts or crown ether complexes as catalysts. The polyaddition of diglycidyl ether of bisphenol A with DCTA proceeded smoothly in chlorobenzene at 120 °C for 24 h to give P‐1 with a number‐average molecular weight of 24,800 in a 95% yield when tetraphenylphosphonium chloride (TPPC) was used as a catalyst; however, no reaction occurred without a catalyst under the same reaction conditions. Polyadditions of other bis(epoxide)s with DCTA also proceeded smoothly with 5 mol % TPPC as a catalyst in chlorobenzene to produce the corresponding polymers (P‐2–P‐4) in high yields under similar reaction conditions. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3604–3611, 2000  相似文献   

3.
The polyaddition of bisphenol A diglycidyl ether (BPGE) with bis(4‐chlorophenyl) phenylphosphonate was carried out using quaternary onium salts or crown ether complexes as catalysts. When the polyaddition was performed using tetrabutylammonium chloride, tetrabutylphosphonium chloride, or 18‐crown‐6/KCl in N‐ methyl‐2‐pyrrolidone at 110°C for 48 h, the corresponding polyphosphonate with moderated molecular weights was obtained in 88–96% yields. The structure of the resulting polyphosphonate was confirmed by IR and 1H‐NMR spectra. The polyaddition of BPGE with various diaryl phosphonates also proceeded very smoothly to produce the corresponding polyphosphonates with moderate molecular weights. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 959–965, 1999  相似文献   

4.
Fluorine‐containing polyethers with pendant hydroxyl groups were synthesized by the polyaddition of fluorine‐containing bis(epoxide)s with certain fluorine‐containing diols with quaternary onium salts as catalysts. When the polyaddition was performed with 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol diglycidiyl ether and 2,2′,6,6′‐tetrafluoro‐4,4′‐biphenol, the corresponding polyether with pendant hydroxyl groups was successfully obtained in good yield. The polyaddition of certain fluorine‐containing bis(epoxide)s with diols also proceeded in bulk to provide the corresponding fluorine‐containing polyethers with high molecular weights. These polyethers were highly transparent at 157 nm for 0.1 μm thickness, with their transmittance of 14–75% at 157 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2543–2550, 2004  相似文献   

5.
The polyaddition of 1,4‐bis[(3‐ethyl‐3‐oxetanyl)methoxymethyl]benzene with 2,2′‐bis[(4‐chloroformyl)oxyphenyl]propane was examined with quaternary onium salts as catalysts. When the polyaddition was carried out with tetrabutylphosphonium bromide in chlorobenzene at 120 °C for 24 h, the corresponding poly(alkyl aryl carbonate) with a high molecular weight (number‐average molecular weight = 16,700) was obtained in an almost quantitative yield. It was found from the 1H NMR and 13C NMR spectra of the obtained polymer that the addition reaction proceeded without any side reactions, providing the polycarbonate with pendant chloromethyl groups in the side chain. The polyaddition of bis{[3‐(3‐ethyloxetanyl)]methyl}terephthalate also proceeded smoothly and gave the corresponding polycarbonate with high molecular weight in a good yield. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2304–2311, 2003  相似文献   

6.
The polyaddition of bisphenol A diglycidyl ether with bis[4‐(P,P‐diphenylphosphinyloxy)phenyl] sulfone catalyzed by quaternary onium salt, such as tetrabutylammonium chloride afforded a new phosphorus‐containing polyether with good solubility in common organic solvents. Having studied various factors affecting the reaction, such as temperature, catalyst concentration, reaction time, etc., an appropriate polyaddition condition was suggested as using 5 mol % of suitable quaternary ammonium or phosphonium salt in polar solvent at 150°C within 25 h in an ampule for producing high molecular weight polymer. A number of polyethers bearing pendent phosphinate ester groups from the polyaddition of certain bis(epoxide)s and bis(phosphinate)s were synthesized under the above condition and characterized by GPC, IR, and NMR. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1009–1016, 1999  相似文献   

7.
The polyaddition of 4,4′‐bis[(3‐ethyl‐3‐oxetanyl)methoxy]biphenyl (4,4′‐BEOBP) and phenylphosphonic dichloride (PPDC) with quaternary onium salts as catalysts proceeded under mild reaction conditions to afford a polymer containing phosphorous atoms in its main chain. A polyphosphonate with a high number‐average molecular weight (10,300) was obtained by the reaction of 4,4′‐BEOBP and PPDC in the presence of tetraphenylphosphonium chloride (TPPC) in o‐dichlorobenzene at 130 °C for 24 h. The structure of the resulting polymer was confirmed with IR, 1H NMR, and 31P NMR spectroscopy. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with phosphonic dichlorides proceeded smoothly to give corresponding polyphosphonates with TPPC as the catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3835–3846, 2002  相似文献   

8.
The synthesis and characterization of the fluoropolymers poly 1a – 1d and poly 2a – 2d with pendant hydroxyl groups were examined. The polyaddition of bis(epoxide)s [2,2′‐bis(4‐glycidyletherphenyl)hexafluoropropane and bisphenol A diglycidyl ether] with dicarboxylic acids (tetrafluoroterephthalic acid and terephthalic acid) and diols [2,2′‐bis(4‐hydroxyphenyl)hexafluoropropane, 2,2′,3,3′,5,5′,6,6′‐octafluoro‐4,4′‐biphenol, 1,4‐bis(hexafluorohydroxyisopropyl)benzene, and 1,3‐bis(hexafluorohydroxyisopropyl)benzene] was carried out at 50–100 °C for 6–48 h in the presence of quaternary onium salts (tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylphosphonium bromide, and tetrabutylphosphonium chloride; 2.5 mol %) as catalysts in dimethyl sulfoxide, N‐methylpyrrolidone, dimethylformamide, dimethylacetamide, dioxane, diglyme, o‐dichlorobenzene, chlorobenzene, and toluene to afford the corresponding polymers, poly 1a – 1d and poly 2a – 2d , with number‐average molecular weights of 11,000–59,400 in 45–97% yields. The solubility of the obtained polymers was good, and their thermal stability might be assumed from their structures. A linear relationship was observed between the contents of the fluorine atoms and the refractive indices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1395–1404, 2002  相似文献   

9.
The polyaddition of bis(3‐ethyl‐3‐oxetanylmethyl) terephthalate (BEOT) with dichlorodiphenylsilane (CPS) using tetrabutylammonium bromide (TBAB) as a catalyst proceeded under mild reaction conditions to afford a polymer containing silicon atoms in the polymer main chain. A poly(silyl ether) (P‐1) with a high molecular weight (Mn = 53,200) was obtained by the reaction of BEOT with CPS in the presence of 5 mol % of TBAB in toluene at 0 °C for 1 h and then at 50 °C for 24 h. The structure of the resulting polymer was confirmed by IR and 1H NMR spectra. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with dichlorosilanes proceeds smoothly to give corresponding poly(silyl ether)s with TBAB as the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2254–2259, 2000  相似文献   

10.
A new bulky pendent bis(ether anhydride), 1,1‐bis[4‐(4‐dicarboxyphenoxy)phenyl]‐4‐phenylcyclohexane dianhydride, was prepared in three steps, starting from the nitrodisplacement of 1,1‐bis(4‐hydroxyphenyl)‐4‐phenylcyclohexane with 4‐nitrophthalonitrile to form bis(ether dinitrile), followed by alkaline hydrolysis of the bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). A series of new poly(ether imide)s were prepared from the bis(ether anhydride) with various diamines by a conventional two‐stage synthesis including polyaddition and subsequent chemical cyclodehydration. The resulting poly(ether imide)s had inherent viscosities of 0.50–0.73 dL g?1. The gel permeation chromatography measurements revealed that the polymers had number‐average and weight‐average molecular weights of up to 57,000 and 130,000, respectively. All the polymers showed typical amorphous diffraction patterns. All of the poly(ether imide)s showed excellent solubility in comparison with the other polyimides derived from adamantane, norbornane, cyclododecane, and methanohexahydroindane and were readily dissolved in various solvents such as N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide, pyridine, cyclohexanone, tetrahydrofuran, and even chloroform. These polymers had glass‐transition temperatures of 226–255 °C. Most of the polymers could be dissolved in chloroform in as high as a 30 wt % concentration. Thermogravimetric analysis showed that all polymers were stable up to 450 °C, with 10% weight losses recorded from 458 to 497 °C in nitrogen. These transparent, tough, and flexible polymer films could be obtained by solution casting from DMAc solutions. These polymer films had tensile strengths of 79–103 MPa and tensile moduli of 1.5–2.1 GPa. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2066–2074, 2002  相似文献   

11.
Eleven bis(phenoxy) naphthalene-containing poly(amide-imide)s IIIa–k were synthesized by the direct polycondensation of 2,7-bis (4-aminophenoxy) naphthalene (DAPON) with various aromatic bis (trimellitimide)s IIa–k in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly (amide-imide)s IIIa–k having inherent viscosities of 0.70–1.12 dL/g were obtained in quantitative yields. The polymers containing p-phenylene or bis(phenoxy) benzene units exhibited crystalline x-ray diffraction patterns. Most of the polymers were readily soluble in various solvents such as NMP, N, N-dimethylacetamide, dimethyl sulfoxide, m-cresol, o-chlorophenol, and pyridine, and gave transparent, and flexible films cast from DMAc solutions. Cast films showed obvious yield points in the stress-strain curves and had strength at break up to 87 MPa, elongation to break up to 11%, and initial modulus up to 2.10 GPa. These poly(amide-imide)s had glass transition temperatures in the range of 255–321°C, and the 10% weight loss temperatures were recorded in the range of 529–586°C in nitrogen. The properties of poly(amideimide)s IIIa–k were compared with those of the corresponding isomeric poly (amide-imide)s III′ prepared from 2,7-bis(4-trimellitimidophenoxy) naphthalene and aromatic diamines. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Polyaddition of bis(4-mercaptophenyl) sulfide ( BMPS ) with m-phenylenebis(2-oxazoline) ( MPBO ) proceeded very smoothly in the mixtures of aprotic ploar solvents such as N-methyl-2-pyrrolidone ( NMP ) with water to produce the corresponding poly(amide–sulfide) with high molecular weights at 90°C under nitrogen. The reaction of BMPS with MPBO , p-phenylenebis(2-oxazoline), and 1,4-butylenebis(2-oxazoline) was also examined in water under the same conditions, and it was found that the reaction proceeds successfully to give the corresponding poly(amide–sulfide)s with high molecular weights. These results mean that water along as well as the mixed solvents of aprotic polar solvents such as NMP with water can be uses as suitable reaction media for the polyaddition of bis(oxazolines) with dithiol to synthesize poly(amide—sulfide)s with high molecular weights. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2711–2717, 1997  相似文献   

13.
Polysulfonates with reactive pendant chloromethyl groups were synthesized by polyadditions of bisepoxides with disulfonyl chlorides. The polyaddition of bisphenol A diglycidyl ether (BPGE) with m-benzene disulfonyl chloride (m-BDSC) occurred in anisole without any catalyst at 130°C for 24 h. However, polymer with high molecular weight was not obtained. On the other hand, the polyadditions of BPGE with m-BDSC proceeded very smoothly with high yield (81–91%) to give polymers with relatively high molecular weights in anisole at 130°C for 24 h when quaternary phosphonium salts were used as catalysts. The polyaddition was also enhanced by the addition of certain crown ether complexes. However, the catalytic activity of these compounds was less than those of quaternary phosphonium salts. Furthermore, polyadditions of certain bisepoxides with disulfonyl chlorides were also carried out to produce the corresponding polymers under the same reaction conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 249–256, 1998  相似文献   

14.
The polyaddition of 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene (BEOB) with 3,3′,5,5′-tetrachlorobisphenol A (TCBPA) was examined with or without catalysts. High molecular weight polymer (polymers 1) (Mn = 13,600) with pendant primary hydroxyl groups was obtained in a 99% yield without any gel products when the reaction was performed with 5 mol % of tetraphenylphosphonium bromide as a catalyst in NMP at 160°C for 96 h. However, when the reaction was carried out without a catalyst under the same conditions, a low molecular weight polymer (Mn = 3200) was obtained in a 51% yield. The structure of the resulting polymer was confirmed by IR, 1H-NMR, and 13C-NMR spectra. In this reaction system, it was also found that tetraphenylphosphonium iodide and crown ether complexes such as 18-crown-6 (18-C-6)/KBr and 18-C-6/KI have high catalytic activity. Polyadditions of 1,4-bis[(3-methyl-3-oxetanyl)methoxymethyl]benzene with TCBPA and BEOB with 3,3′,5,5′-tetrabromobisphenol-S were also examined, and corresponding polymers (polymers 2 and 3) were obtained in good yields. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2781–2790, 1999  相似文献   

15.
Polyethers with unsymmetrical structures in the main chains and pendant chloromethyl groups were synthesized by the polyaddition of 3‐ethyl‐3‐(glycidyloxymethyl)oxetane (EGMO) with certain diacyl chlorides with quaternary onium salts or pyridine as catalysts. The unsymmetrical polyaddition of EGMO containing two different cyclic ether moieties such as oxirane and oxetane groups with terephthaloyl chloride proceeded smoothly in toluene at 90 °C for 6 h to give polymer 1 with a number‐average molecular weight (Mn) of 51,700 in a 93% yield when tetrabutylammonium bromide (TBAB) was used as a catalyst. The polyaddition also proceeded smoothly under the same conditions when other quaternary onium salts, such as tetrabutylammonium chloride, tetrabutylammonium iodide, tetrabutylphosphonium chloride, and tetrabutylphosphonium bromide, and pyridine were used as catalysts. However, without a catalyst no reaction occurred under the same reaction conditions. Polyadditions of EGMO with isophthaloyl chloride and adipoyl chloride gave polymer 2 (Mn = 28,700) and polymer 3 (Mn = 25,400) in 99 and 65% yields, respectively, under the same conditions. The chemical modification of the resulting polymer, polymer 1 , which contained reactive pendant chloromethyl groups, was also attempted with potassium 3‐phenyl‐2,5‐norbornadiene‐2‐carboxylate with TBAB as a phase‐transfer catalyst, and a polymer with 65 mol % pendant norbornadiene moieties was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 368–375, 2001  相似文献   

16.
A novel bis(ether anhydride) monomer, 3,6‐bis(3,4‐dicarboxyphenoxy)benzonorbornane dianhydride, was synthesized from the nitro displacement of 4‐nitrophthalonitrile with 3,6‐dihydroxybenzonorbornane in the presence of potassium carbonate, followed by the alkaline hydrolysis of the intermediate bis(ether dinitrile) and the cyclodehydration of the resulting bis(ether diacid). A series of poly(ether imide)s bearing pendant norbornane groups were prepared from the bis(ether anhydride) with various aromatic diamines via a conventional two‐stage process that included ring‐opening polyaddition to form the poly(amic acid)s followed by thermal imidization to the poly(ether imide)s. The inherent viscosities of the poly(amic acid) precursors were 0.81–1.81 dL/g. The poly(ether imide) with m‐phenylenediamine as a diamine showed good organosolubility. Most of the cast poly(ether imide) films have had high tensile strengths and moduli. The glass‐transition temperatures of these poly(ether imide)s, except for those from rigid p‐phenylenediamine and benzidine, were recorded between 211 and 246 °C by differential scanning calorimetry. The softening temperatures of all the poly(ether imide) films stayed within 210–330 °C according to thermomechanical analysis. No polymers showed significant decomposition before 500 °C in a nitrogen or air atmosphere. A comparative study of the properties with the corresponding poly(ether imide)s without pendant substituents was also made. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1712–1725, 2002  相似文献   

17.
Addition reaction of (3-methyl-3-oxetanyl)methyl acetate (MOMA) with bis(4-mercaptophenyl) sulfide (BMPS) was examined in certain organic solvents. When the reaction of MOMA with BMPS was performed without any catalyst in hexamethylphosphoric triamide (HMPA) and N-methyl-2-pyrrolidone (NMP) at 130°C for 24 h, conversions of the corresponding adduct were 96 and 36%, respectively, which was confirmed by 1H-NMR spectra. On the other hand, when the reaction was carried out using tetraphenylphosphonium bromide (TPPB) as a catalyst under the same conditions, conversions of the adduct were 96 and 81% in HMPA and NMP, respectively. This result shows that although the addition reaction of oxetane compound with aromatic dithiol proceeds without any catalyst in HMPA, the reaction was strongly enhanced by adding TPPB in NMP. On the basis of the above results, polyadditions of bis((3-methyl-3-oxetanyl)methyl) terephthalate (BMOT) and bis((3-ethyl-3-oxetanyl)methyl) terephthalate with BMPS were performed using TPPB as the catalyst in NMP at 130°C for 24 h. As a result, the corresponding high molecular weight polymers 1 (Mn = 22,400) and 2 (Mn = 12,800) with pendant primary hydroxyl groups were obtained in 83 and 89% yields without any gel products, respectively. Furthermore, a low molecular weight oligomer was obtained from the polyaddition of BMOT with aliphatic dithiol, bis(mercaptomethyl)benzene, under the same reaction conditions. The catalytic activity on the polyaddition of BMOT with BMPS was also examined, and it was found that thermally stable TPPB and crown ether complexes at the reaction temperature (130°C) have higher catalytic activity than tetrabutylammonium bromide and tetrabutylphosphonium bromide to produce polymer 1 with high molecular weight. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2873–2880, 1998  相似文献   

18.
The ability to achieve high molecular weight poly(ether ketone)s from the polycondensation of bis(aryl chloride)s with bis(phenolate)s has been consistently demonstrated. The polymerizations presented here help to delineate for specific bis(aryl chloride)/bisphenolate pairs the reaction conditions required to obtain high molecular weight polymers. Polycondensation of 1,3-bis(4-chlorobenzoyl)-5-tert-butylbenzene ( 6 ) and 2,2′-bis(4-chlorobenzoyl)-biphenyl ( 15 ) with various bisphenolates as well as of 2,2′-bis(4-hydroxyphenoxy)biphenyl ( 33 ) with 4,4′-dichlorobenzophenone ( 41 ) and 1,3-bis(4-chlorobenzoyl)benzene ( 43 ) were used as representative model systems to select reaction conditions that led to high molecular weight polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Polyadditions of 1,4-benzenedithiol (BDT) to bis(alkoxyallene)s, such as 1,4-bis(allenyloxy)xylene (3) and 1,4-bis(allenyloxy) benzene (4) , were carried out in benzene at 25°C by irradiation with a high pressure mercury lamp. Thiol groups were added to the terminal double bonds of the allenyloxy groups selectively to afford polymers containing reactive carbon–carbon double bonds in the main chain, similar to the radical polyadditions using azobis(isobutyronitrile) (AIBN). The molecular weight of the polymer obtained from BDT and 3 was 10 times higher than that of the polymer produced in the radical polyaddition with AIBN; whereas the molecular weight of the polymer from BDT and 4 was similar to that in the radical polyaddition, probably because of poor solubility of 4 and the polymer toward benzene. The geometrical structure of carbon–carbon double bonds in the polymer isomerized from an E to Z structure with reaction time by virtue of both the addition elimination of thiyl radical to the double bonds and the UV irradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号