首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living anionic polymerization of two kinds of methyl-substituted β-lactams, 3,3-dimethyl-, and 4,4-dimethyl-2-azetidinones, was attained at 25°C in N,N-dimethylacetamide containing 5 wt % of lithium chloride and proceeded in a homogeneous phase quantitatively. The resulting polyamides were found to have a narrow molecular weight distribution from the gel permeation chromatography. The number average molecular weights estimated from the peak intensities in the 1H-NMR spectra were almost equal to those calculated from the mol ratio of the consumed lactam to the corresponding N-benzoyl derivative used as an activator. In addition, the acyllactam-type growing chain ends were modified quantitatively by the reaction with benzylamine after the polymerization. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The preparation of a monodisperse hydrophilic polyamide was achieved in the anionic polymerization of a bicyclic oxalactam, 8-oxa-6-azabicyclo[3.2.1]octan-7-one (abbreviated BOL) with the use of N-benzoyl BOL and potassium pyrrolidonate (2 and 0.5 mol % to BOL, respectively) in dimethyl sulfoxide at 25°C. The number-average molecular weight of the polyamide increased in direct proportion to the monomer conversion, and was consistent with the value calculated from the amounts of the consumed monomer and activator. The molecular weight distribution (MWD) of the polyamide obtained until the middle stage of polymerization (polymerization time, < 10 min; monomer conversion, < 60%) was found to be narrow (Mw/Mn = 1.1). The MWD was gradually broadened in the later stage of the polymerization, which may result from the redistribution of molecular weight of the resulting polyamide not only by the polymerization–depolymerization equilibrium, but also by transamidation between polymer chains.  相似文献   

3.
The Menschutkin reaction of three poly(tertiary aminostyrene)s: poly(N,N-dimethyl-4-vinylphenylamine) (PPA), poly(N,N-dimethyl-4-vinylbenzylamine) (PBA), and poly(N,N-dimethyl-4-vinylphenethylamine) (PPTA) was investigated. These three polymers having narrow molecular weight distributions were prepared via anionic living polymerization. PPA reacted homogeneously with n-butyl bromide in N,N-dimethylformamide (DMF). PBA and PPTA also reacted homogeneously with n-butyl bromide in a mixture of DMF/methanol (75/25 v/v %). GPC measurement of the quaternized polymers was carried out using a mixture of water/acetonitrile (80/20 v/v %) containing 0.5M acetic acid and 0.3M sodium sulfate (pH = 2.9) as an eluant in order to suppress adsorption of the quaternized water soluble polymers on GPC gel. Results of GPC measurement indicate that the polymer chains of the three poly(tertiary aminostyrene)s are neither severed nor crosslinked in the process of quaternization. Temperature dependence and reaction time dependence on the degree of quaternization (DQ) were studied for PPT, PBA, and PPTA. By altering reaction time and temperature, the DQ values of the three poly(tertiary aminostyrene)s could be controlled in the range from 0% to nearly 100%. Quaternization reactivity of the amino groups in the three polymers was found to decrease in the order, PPTA, PBA, and PPA. The differences in reactivity are thought to be attributable to the electron density on the nitrogen atom of the N,N-dimethylamino group, and steric hindrance in the vicinity of the nitrogen atom. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1219–1226, 1997  相似文献   

4.
New imine monomers containing C-aryl and N-cyano substituents were synthesized and polymerized by both radical and anionic initiation. Homopolymerization yielded low molecular weight polymers (Mn < 2100). Higher yields were obtained with anionic initiation rather than radical initiation. Radical initiated copolymerization with p-methoxystyrene gave low yields of low molecular weight copolymers. Radical initiated copolymerization with methyl acrylate gave copolymers of 15,000–,32,000 molecular weight in moderate yields, but with rather low incorporation of the imine monomer. The C-substituent affected the anionic and free radical reactivity similarly. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2703–2710, 1997  相似文献   

5.
With Ph2CHK as an initiator, the anionic polymerization of N‐propyl‐N‐(3‐triisopropoxysilylpropyl)acrylamide ( 4 ) and N‐propyl‐N‐(3‐triethoxysilylpropyl)acryl‐amide generated polymers with predicted molecular weights and narrow molecular weight distributions (MWDs) in the presence of Et2Zn or Et3B; however, the resulting polymers obtained in the absence of such Lewis acids had very broad MWDs. The results were ascribed to the coordination of the propagating anionic end to a relatively weak Lewis acid, in which the activity of the end anion was appropriately controlled for moderate polymerization without side reactions. A well‐defined diblock copolymer of 4 and N,N‐diethylacrylamide was also prepared with the binary initiating system of Ph2CHK and Et2Zn, whereas no such block copolymer was prepared by polymerization initiated with 1,1‐diphenyl‐3‐methylpentyllithium, as the propagating anion together with the lithium ion reacted with alkoxysilyl side groups on the poly( 4 ) backbone to produce grafted polymers with high molecular weights. The hydrolysis of the alkoxysilyl side groups of poly( 4 ) in acidic water yielded an insoluble gel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2754‐2764, 2005  相似文献   

6.
The synthesis of polyamide-imide (PAI) can be performed by the reaction of p-chlorophenol-(PCP) blocked 4,4′-diphenyl methane diisocyanates (BMDI) with trimellitic anhydride (TMA) using a two-stage heating. At 80°C the polyimide oligomers were first formed and the high molecular weight PAI can not be available until the temperature was increased to 120°C and stayed for 3 h, during which the amide groups were formed and the molecular weight was increased. The molecular weights of the synthesized PAIs on various conditions were analyzed by measuring the intrinsic viscosity, amide/imide ratio from IR spectra, and average chain length from GPC. The best reaction conditions for obtaining a high molecular weight PAI by the solution polymerization are: (a) using N-methyl pyrollidone (NMP) as solvent, (b) adding more BMDI/TMA ratio, and (c) adding tert-n-butyl amine as the catalyst for the dissociation of blocked MDI and controlling the catalyst concentration at 0.162M. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1711–1717, 1997  相似文献   

7.
The cationic polymerization of isobutyl vinyl ether was examined with transition‐metal ate complexes with trityl cation as initiators. The initiators were generated by the reaction of triphenylmethyl chloride [trityl chloride (TrCl)] with ate complexes of Nb, Mo, and W with lithium cation, which were obtained in situ by the reaction of the transition‐metal halides with anionic reagents (organolithium or lithium amide). When the polymerization was initiated with a mixture of TrCl and Li+[NbH5(NnBuPh)]?, the resulting poly(isobutyl vinyl ether)s had narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.13–1.20). Although the polymerization was supposed to be initiated by the electrophilic attack of the trityl cation, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of the resulting poly(isobutyl vinyl ether)s revealed the presence of H at the α‐chain end. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2636–2641, 2006  相似文献   

8.
The synthesis and polymerizability of imine C?N monomers is surveyed. The investigated imines were either far more reactive than similarly substituted C?C or C?O monomers, or too stable to polymerize. Imines with electron‐attracting substituents on N favor polymerization by anionic mechanism, but led only to low molecular weight polymers. Imines with a donor substituent on N, such as N‐arylmethyleneimines, polymerized by cationic or anionic mechanism. 1‐ and 2‐Aza‐1,3‐butadienes were also rather unstable and polymerized to oligomers. The symmetrically substituted 2,3‐diaza‐1,3‐butadienes could be purified and polymerized successfully using anionic initiators, resulting in both 1,4‐ and 1,2‐structures in the polymer backbone, depending on the substituents. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
The anionic polymerization of allyl methacrylate was carried out in tetrahydrofuran, both in the presence and in the absence of LiCl, with a variety of initiators, at various temperatures. It was found that (1,1-diphenylhexyl)lithium and the living oligomers of methyl methacrylate and tert-butyl methacrylate are suitable initiators for the anionic polymerization of this monomer. The temperature should be below −30°C, even in the presence of LiCl, for the living polymerization to occur. When the polymerization proceeded at −60°C, in the presence of LiCl, with (1,1-diphenylhexyl)-lithium as initiator, the number-average molecular weight of the polymer was directly proportional to the monomer conversion and monodisperse poly(allyl methacrylate)s with high molecular weights were obtained. 1H-NMR and FT-IR indicated that the α CC double bond of the monomer was selectively polymerized and that the allyl group remained unreacted. The prepared poly(allyl methacrylate) is a functional polymer since it contains a reactive CC double bond on each repeating unit. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2901–2906, 1997  相似文献   

10.
New phthalide-containing bisphenols, phenolphthalein-N-(3-methylanilide) (3-PMA), and phenolphthalein-N-(4-methylanilide) (4-PMA), were synthesized from phenolphthalein and m- and p-toluidines. These bisphenols were polycondensed with terephthaloyl chloride (TPC) using an interfacial or solution polymerization technique to yield new polyesters. Copolymers were also obtained by utilizing different molar proportion of phenolphthalein (PPH) and 3-PMA or 4-PMA with TPC. The polymers prepared by solution polymerization were obtained in 93–99% yields and showed reduced viscosities in the range 0.37–0.83 dL/g. They were readily soluble in chlorinated hydrocarbons and aprotic polar solvents. The polyesters showed glass transition temperatures in the range 261–300°C as measured by DSC. Thermogravimetric analysis of the polyesters indicated no weight loss below 408°C under N2 atmosphere. Structure–property correlations among these cardo polyesters have been discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3227–3234, 1997  相似文献   

11.
Pyrolysis of (N-α-isopropoxyethyl)isobutyramide, which was obtained by the reaction of isobutyramide, 2-propanol, and acetaldehyde in the presence of conc. sulfuric acid, produced N-vinylisobutyramide (NVIBA). The free radical polymerization of NVIBA was carried out in various solvents in the presence of a radical initiator. It was found that the polymerizability of NVIBA is similar to that of N-vinylacetamide. The resulting polyNVIBA showed a lower critical solution temperature (LCST) sharply at 39°C. Thermosensitive properties of polyNVIBA were investigated in comparison with poly(N-isopropylacrylamide). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1763–1768, 1997  相似文献   

12.
Thermoplastic polyamide elastomers were obtained by polymerization of aminobenzoyl‐substituted telechelics derived from poly(tetrahydrofuran)‐diols (number‐average molecular weight: 1400 or 2000 g mol?1) with several diacid dichlorides (terephthaloyl dichloride, 4,4′‐biphenyldicarbonyl dichloride, or 2,6‐naphthalenedicarbonyl dichloride) and chlorotrimethylsilane in N,N‐dimethylacetamide at 0–20 °C. The as‐prepared polymers had melting temperatures above 190 °C and exhibited elastic properties at room temperature, as evidenced by dynamic mechanical analysis and stress–strain measurements. The polymer with 2,6‐naphthalenedicarboxamide hard segments had the widest rubbery plateau within the series, the highest extension at break, and good recovery properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1449–1460, 2004  相似文献   

13.
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006  相似文献   

14.
Ring‐opening polymerization (ROP) of ε‐caprolactone and L‐lactide (LA) was studied using stannous(II) 2‐ethylhexanoate (Sn(Oct)2) with N,N‐dimethylformamide‐dimethyl acetal (DMF‐DMA). DMF‐DMA showed a tenfold improvement in catalytic activity over that of Sn(Oct)2 under the same conditions. It also enhanced the capability to control molecular weight in the synthesis of small molecular weight polymers of polycaprolactone and polylactide (PLA). The high molecular weight polymerization demonstrated a strong capability to control molecular weight for the polymerization of LA: a molecular weight of PLA exceeding 400,000 was obtained at very low catalytic loadings. The individual polymerization rates of other tin reagents with DMF‐DMA also clearly increased. Applying this methodology could drastically reduce the time and cost required for the fabrication of these products to increase the competitive advantage of manufacturers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   

16.
We describe a novel method of polymerization, via the insertion of activated glycine esters into N‐salicylideneglycinato‐aquo‐copper(II) chelate ( 1 ), that uses the reactivity of the metal chelate. In the absence of 1 , a high molecular weight polyglycine was formed as a white precipitate after triethylamine was added to an N,N‐dimethylformamide solution of 4‐nitrophenyl glycinate ( 3a ). In the presence of 5 mol % 1 , however, the polymerization proceeded homogeneously. After the reaction mixture was poured into tetrahydrofuran, a condensation product of glycine was obtained. According to gel permeation chromatography analysis, the product consisted of high and low molecular weight fractions. The former and latter were obtained by self‐polycondensation and polycondensation via the insertion of 3a into 1 , respectively. So that the self‐polycondensation of activated glycinates would be depressed, 2‐chlorophenyl ( 3b ), 3‐chlorophenyl ( 3c ), 4‐chlorophenyl, and phenyl glycinates were used as less activated glycine esters. For the polymerization of 3b and 3c , the polymerization via the insertion of activated glycinates into 1 was promoted. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1504–1510, 2003  相似文献   

17.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

18.
Molybdenum chloride (MoCl5 or 1a ) and tungsten chloride (WCl6 or 1b )/phenyllithium (PhLi)/triisobutylaluminum (iBu3Al) systems were found to be quite effective for controlling the anionic polymerization of methyl methacrylate (MMA), affording high molecular weight poly(methyl methacrylate)s (PMMAs; number‐average molecular weight > 100,000) with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.25) quantitatively at 0 °C for 1 h in toluene. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) analyses of PMMAs obtained with the 1a and 1b /organolithium (RM; n‐butyllithium, PhLi)/iBu3Al systems revealed that the initiation of MMA with the systems occurred by a nucleophilic attack of H? to the monomer. In addition, the MALDI‐TOF MS analyses indicated that the presence of iBu3Al was responsible for the controlled polymerization by improving the uniformity of the polymerization with respect to initiation and termination and by preventing a backbiting reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4302–4315, 2002  相似文献   

19.
Well‐defined end‐functionalized polystyrene, poly(α‐methylstyrene), and polyisoprene with polymerizable aziridine groups were synthesized by the termination reactions of the anionic living polymers of styrene, α‐methylstyrene, and isoprene with 1‐[2‐(4‐chlorobutoxy)ethyl]aziridine in tetrahydrofuran at ?78 °C. The resulting polymers possessed the predicted molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.1) as well as aziridine terminal moieties. The cationic ring‐opening polymerization of the ω‐monofunctionalized polystyrene having an aziridinyl group with Et3OBF4 gave the polymacromonomer, whereas the α,ω‐difunctional polystyrene underwent crosslinking reactions to afford an insoluble gel. Crosslinking products were similarly obtained by the reaction of the α,ω‐diaziridinyl polystyrene with poly(acrylic acid)‐co‐poly(butyl acrylate). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4126–4135, 2005  相似文献   

20.
The photoreduction behavior of p-nitroaniline (pNA) in the presence of N,N-dimethylaniline (DMA) induced by both steady-state (365 nm) and laser (337 nm) irradiation has been analyzed. The stoichiometry of the photoreduction reaction revealed that several amino radicals derived from DMA were generated by each photoreduced pNA molecule. The polymerization kinetics of the lauryl acrylate monomer (LA) photoinitiated by the pNA/DMA system has been studied by differential scanning photocalorimetry (Photo-DSC). The rate of polymerization was found to be proportional to the square root of both the incident light and the coinitiator DMA concentration. The order of the polymerization reaction with respect to monomer and initiator concentration was determined, as well as the polymerization behavior under aerobic conditions. The polymerization efficiency of this photoinitiated system was much higher than that obtained with conventional aromatic ketone photoinitiators. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3801–3812, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号