首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In this paper we obtain necessary and sufficient conditions for the validity of the estimate The constant c does not depend on u. u is a vector field with values in ?3. It is defined on a bounded set G of ?3 or an unbounded one, denoted by ?. The boundary conditions are as follows: either the normal component of u vanishes or the tangential one does. Our conditions are expressed in terms of the Betti numbers of G or ?.  相似文献   

2.
H. Cao 《组合设计杂志》2009,17(3):253-265
A (k,λ)‐semiframe of type gu is a (k,λ)‐group‐divisible design of type gu (??, ??, ??), in which the collection of blocks ?? can be written as a disjoint union ??=??∪?? where ?? is partitioned into parallel classes of ?? and ?? is partitioned into holey parallel classes, each holey parallel class being a partition of ??\Gj for some Gj∈??. In this paper, we shall prove that the necessary conditions for (3,λ)‐semiframes of type 3u are also sufficient with one exception. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 253–265, 2009  相似文献   

3.
Let F be a free group on a countable set {x1, x2, …} and ν be a variety of groups, defined by the set of outer commutators V, in the free generators xi's.The paper is devoted to give the complete structure of a ν-covering of ν-perfect groups. Fur thermore necessary and sufficient conditions for the universality of a ν-central extension by a group and its ν-covering group will be presented.  相似文献   

4.
Let G be a finite group and W be a faithful representation of G over C. The group G acts on the field of rational functions C(W). The question whether the field of invariant functions C(W) G is purely transcendental over C goes back to Emmy Noether. Using the unramified cohomology group of degree 2 of this field as an invariant, Saltman gave the first examples for which C(W) G is not rational over C. Around 1986, Bogomolov gave a formula which expresses this cohomology group in terms of the cohomology of the group G. In this paper, we prove a formula for the prime to 2 part of the unramified cohomology group of degree 3 of C(W) G . Specializing to the case where G is a central extension of an F p -vector space by another, we get a method to construct nontrivial elements in this unramified cohomology group. In this way we get an example of a group G for which the field C(W) G is not rational although its unramified cohomology group of degree 2 is trivial. Dedicated to Jean-Louis Colliot-Thélène.  相似文献   

5.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

6.
We define a partial ordering on the set of σ-polynomials as well as a vertex splitting operation on the set of graphs, and introduce the notions of σ-equivalence and σ-uniqueness of graphs. Let σ(G) be the σ-polynomial of a graph G and (OVERBAR)σ(G) = σ(Gc). Let H = (G, v, A, B) be a vertex splitting graph of G. We prove that (OVERBAR)σ(G) ≤ (OVERBAR)σ(H) and the equality holds if and only if every vertex of A is adjacent to every vertex of B. This gives us an effective means to find σ-equivalent and χ-equivalent graphs. A necessary and sufficient condition for a graph to be χ-unique but not σ-unique is also obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
In this paper, we study the equation –Δu = K(x)u5 in ?3 and provide a large class of positive functions K(x) for which we obtain infinitely many positive solutions which decay at infinity at the rate of |x|?1. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
We use the stochastic process called the Brownian snake to investigate solutions of the partial differential equation Δu = u2 in a domain D of class C2 of the plane. We prove that nonnegative solutions are in one-to-one correspondence with pairs (K, v) where K is a closed subset of ∂D and v is a Radon measure on ∂D\K. Both Kand v are determined from the boundary behavior of the solution u. On the other hand, u can be expressed in terms of the pair (K, v) by an explicit probabilistic representation formula involving the Brownian snake. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
Let M : = Γ\G/K be the quotient of an irreducible Hermitian symmetric space G/K by a torsionfree cocompact lattice G ì G{\Gamma \subset G}. Let V be a complex irreducible representation of G. We give a Hodge decomposition of the cohomology of the Γ-module V in terms of the cohomologies of automorphic vector bundles on M associated to the Lie algebra cohomologies H*(\mathfrak p+ ,V){H*({\mathfrak p}^{+} ,V)}.  相似文献   

10.
Given a 3‐colorable graph G together with two proper vertex 3‐colorings α and β of G, consider the following question: is it possible to transform α into β by recoloring vertices of G one at a time, making sure that all intermediate colorings are proper 3‐colorings? We prove that this question is answerable in polynomial time. We do so by characterizing the instances G, α, β where the transformation is possible; the proof of this characterization is via an algorithm that either finds a sequence of recolorings between α and β, or exhibits a structure which proves that no such sequence exists. In the case that a sequence of recolorings does exist, the algorithm uses O(|V(G)|2) recoloring steps and in many cases returns a shortest sequence of recolorings. We also exhibit a class of instances G, α, β that require Ω(|V(G)|2) recoloring steps. © 2010 Wiley Periodicals, Inc. J Graph Theory 67: 69‐82, 2011  相似文献   

11.
Let G be a graph of order 4k and let δ(G) denote the minimum degree of G. Let F be a given connected graph. Suppose that |V(G)| is a multiple of |V(F)|. A spanning subgraph of G is called an F‐factor if its components are all isomorphic to F. In this paper, we prove that if δ(G)≥5/2k, then G contains a K4?‐factor (K4? is the graph obtained from K4 by deleting just one edge). The condition on the minimum degree is best possible in a sense. In addition, the proof can be made algorithmic. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 111–128, 2002  相似文献   

12.
For a connected graph the restricted edge‐connectivity λ′(G) is defined as the minimum cardinality of an edge‐cut over all edge‐cuts S such that there are no isolated vertices in GS. A graph G is said to be λ′‐optimal if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G defined as ξ(G) = min{d(u) + d(v) ? 2:uvE(G)}, d(u) denoting the degree of a vertex u. A. Hellwig and L. Volkmann [Sufficient conditions for λ′‐optimality in graphs of diameter 2, Discrete Math 283 (2004), 113–120] gave a sufficient condition for λ′‐optimality in graphs of diameter 2. In this paper, we generalize this condition in graphs of diameter g ? 1, g being the girth of the graph, and show that a graph G with diameter at most g ? 2 is λ′‐optimal. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 73–86, 2006  相似文献   

13.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

14.
A point disconnecting set S of a graph G is a nontrivial m-separator, where m = |S|, if the connected components of G - S can be partitioned into two subgraphs, each of which has at least two points. A 3-connected graph is quasi 4-connected if it has no nontrivial 3-separators. Suppose G is a graph having n ≥ 6 points. We prove three results: (1) If G is quasi 4-connected with at least 3n - 4 edges, then the graph K?1, obtained from K6 by deleting an edge, is a minor of G. (2) If G has at least 3n - 4 edges then either K?6 or the graph obtained by pasting two disjoint copies of K5 together along a triangle is a minor of G. (3) If the minimum degree of G is at least 6, then K?6 is a minor of G. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Let G be a connected graph and let eb(G) and λ(G) denote the number of end‐blocks and the maximum number of disjoint 3‐vertex paths Λ in G. We prove the following theorems on claw‐free graphs: (t1) if G is claw‐free and eb(G) ≤ 2 (and in particular, G is 2‐connected) then λ(G) = ⌊| V(G)|/3⌋; (t2) if G is claw‐free and eb(G) ≥ 2 then λ(G) ≥ ⌊(| V(G) | − eb(G) + 2)/3 ⌋; and (t3) if G is claw‐free and Δ*‐free then λ(G) = ⌊| V(G) |/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ‐factor: Let n and p be integers, 1 ≤ pn − 2, G a 2‐connected graph, and |V(G)| = 3n. Suppose that GS has a Λ‐factor for every SV(G) such that |S| = 3p and both V(G) − S and S induce connected subgraphs in G. Then G has a Λ‐factor. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 175–197, 2001  相似文献   

16.
The semi‐linear equation −uxx − ϵuyy = f(x, y, u) with Dirichlet boundary conditions is solved by an O(h4) finite difference method, which has local truncation error O(h2) at the mesh points neighboring the boundary and O(h4) at most interior mesh points. It is proved that the finite difference method is O(h4) uniformly convergent as h → 0. The method is considered in the form of a system of algebraic equations with a nine diagonal sparse matrix. The system of algebraic equations is solved by an implicit iterative method combined with Gauss elimination. A Mathematica module is designed for the purpose of testing and using the method. To illustrate the method, the equation of twisting a springy rod is solved. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 395–407, 2000  相似文献   

17.
Let ? be a symmetric binary function, positive valued on positive arguments. A graph G = (V,E) is a ?‐tolerance graph if each vertex υ ∈ V can be assigned a closed interval Iυ and a positive tolerance tυ so that xyE ? | IxIy|≥ ? (tx,ty). An Archimedean function has the property of tending to infinity whenever one of its arguments tends to infinity. Generalizing a known result of [15] for trees, we prove that every graph in a large class (which includes all chordless suns and cacti and the complete bipartite graphs K2,k) is a ?‐tolerance graph for all Archimedean functions ?. This property does not hold for most graphs. Next, we present the result that every graph G can be represented as a ?G‐tolerance graph for some Archimedean polynomial ?G. Finally, we prove that there is a ?universal”? Archimedean function ? * such that every graph G is a ?*‐tolerance graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 179–194, 2002  相似文献   

18.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

19.
We consider the equation in question on the interval 0 ≦ x ≦ 1 having Neumann boundary conditions, with f(u) = F(u), where F is a double well energy density with equal minima at u = ±1. The only stable states of the system are patternless constant solutions. But given two-phase initial data, a pattern of interfacial layers typically forms far out of equilibrium. The ensuing nonlinear relaxation process is extremely slow: patterns persist for exponentially long times proportional to exp{A±l/?, where A = F(±1) and l is the minimum distance between layers. Physically, a tiny potential jump across a layer drives its motion. We prove the existence and persistence of these metastable patterns, and characterise accurately the equations governing their motion. The point of view is reminiscent of center manifold theory: a manifold parametrising slowly evolving states is introduced, a neighbourhood is shown to be normally attracting, and the parallel flow is characterised to high relative accuracy. Proofs involve a detailed study of the Dirichlet problem, spectral gap analysis, and energy estimates.  相似文献   

20.
A graph G is 3‐domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3‐connected 3‐domination critical graph of order n. In this paper, we show that there is a path of length at least n?2 between any two distinct vertices in G and the lower bound is sharp. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 76–85, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号