首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以NaOH固化法制备的壳聚糖/凹凸棒土(CS/ATP)复合树脂为载体,以水杨醛和天冬氨酸合成的席夫碱为配体,分别合成Co、Mn、Cu、Fe和Ni的席夫碱金属配合物及其负载型席夫碱金属配合物,并通过FT-IR对其进行结构表征,且以苯乙烯为底物,分子氧为氧源,分别考察了各种催化剂对苯乙烯的环氧化性能。 实验结果表明,在小分子席夫碱金属配体中,Co-Schiff碱催化性能较好。 将Co-Schiff碱负载到CS/ATP复合树脂中,综合考察了Co-Schiff碱-CS/ATP的用量、温度、时间对苯乙烯催化环氧化性能的影响,结果表明,反应温度为80 ℃,反应时间为8 h,苯乙烯的转化率达93.1%。  相似文献   

2.
Polymeric analogs of well-known chiral Mn(III)-salen complexes were synthesized and were used as recyclable catalysts for asymmetric epoxidation of olefins. For this purpose two different monomers, 2 and 3 , bearing chiral Mn(III)-salen moieties were synthesized. The monomer 3 carries a bulky substituent closer to the Schiff base moiety, while monomer 2 lacks such a substituent. These metal complexed chiral monomers were subsequently copolymerized with ethylene glycol dimethacrylate producing insoluble crosslinked functional matrices that possess macroporous morphology. Chemo- and enantioselective catalytic activities of these two polymers were evaluated for epoxidation of olefins. Both polymers catalyzed the epoxidation of a variety of olefins at room temperature in the presence of iodosylbenzene (PhIO) as the terminal oxidant with yields comparable to the homogenous system. In terms of their enantioselective catalytic activity, polymer P-2 (obtained from 3 ) performed better than polymer P-1 (obtained from 2 ). Unfortunately, while the homogeneous systems are reported to offer over 80% enantioselectivity, with the present polymeric catalysts, enantioselectivity to a maximum of 30% were observed. Unlike the homogeneous system, use of an external nitrogenous donor played a very insignificant role in influencing enantioselectivity. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1809–1818, 1997  相似文献   

3.
A novel Mo(VI) tetradentate Schiff base complex based on two pyrrole‐imine donors was anchored covalently on Fe3O4 nanoparticles and characterized using physicochemical techniques. The catalytic epoxidation process was optimized in terms of the effects of solvent, reaction temperature, kind of oxidant and amount of oxidant and catalyst. Then the novel heterogeneous nanocatalyst was used for the efficient and selective catalytic epoxidation of internal alkenes (cyclohexene, cyclooctene, α‐pinene, indene and trans ‐1,2‐diphenylethene) and terminal alkenes (n ‐heptene, n ‐octene, n ‐dodecene and styrene) using tert ‐butyl hydroperoxide (70% in water) as oxidant in 1,2‐dichloroethane as solvent. The prepared nanocatalyst is very effective for the selective epoxidation of cis ‐cyclooctene with 100% conversion, 100% selectivity and turnover frequency of 1098 h−1 in just 30 min. The magnetic nanocatalyst was easily recovered using an external magnetic field and was used subsequently at least six times without significant decrease in conversion.  相似文献   

4.
采用自由配体法将双水杨醛缩丙二胺席夫碱钴配合物Co(Salprn)封装于Y型分子筛超笼中,并通过X射线衍射、漫反射UV-Vis光谱、FT-IR光谱和差热分析技术对所制备的催化剂进行了表征。该催化剂样品( [Co(Salprn)]-Y)在苯乙烯环氧化反应中较纯配合物Co(Salprn)表现出很高的催化活性。反应条件(包括溶剂、催化剂用量、异丁醛浓度和反应时间)对催化性能有较大影响。研究结果还表明,[Co(Salprn)]-Y对其他烯烃的环氧化也具有较高催化活性。其活性顺序为苯乙烯﹥环己烯﹥环辛烯﹥正辛烯。  相似文献   

5.
A phenoxybutane‐based Schiff base complex of cis‐dioxo‐Mo(VI) was supported on paramagnetic nanoparticles and characterized using powder X‐ray diffraction, infrared, diffuse reflectance and atomic absorption spectroscopies, scanning and transmission electron microscopies and vibrating sample magnetometry. The separable nanocatalyst was tested for the selective epoxidation of cyclohexene, cyclooctene, styrene, indene, α‐pinene, 1‐octene, 1‐heptene, 1‐dodecene and trans‐stilbene using tert‐butyl hydroperoxide (80% in di‐tert‐butyl peroxide–water, 3:2) as oxidant in chloroform. The catalyst was efficient for oxidation of cyclooctene with 100% selectivity for epoxidation with 98% conversion in 10 min. We were able to separate magnetically the nanocatalyst using an external magnetic field and used the catalyst at least six successive times without significant decrease in conversion. The turnover frequency of the catalyst was remarkable (2556 h?1 for cyclooctene). The proposed nanomagnetic catalyst has advantages in terms of catalytic activity, selectivity, catalytic reaction time and reusability by easy separation.  相似文献   

6.
杨刚  陈星  王小丽  邢卫红  徐南平 《催化学报》2013,34(7):1326-1332
制备了镍(II)席夫碱配合物官能化的MCM-41多相催化剂MCM-41-Ni.利用X射线粉末衍射、氮气物理吸附脱附、红外光谱、热重、电感耦合等离子体原子发射光谱、元素分析和透射电镜等方法对催化剂进行了表征.以氧气为氧化剂,MCM-41-Ni在催化环氧化苯乙烯的反应中表现出较高的催化活性;苯乙烯的转化率为95.2%,环氧苯乙烷的选择性为66.7%.系统地研究了反应温度、催化剂用量、溶剂以及反应时间对反应性能的影响.催化剂经过4次循环仍然表现出较好的稳定性和催化活性.  相似文献   

7.
高宇  张月成  赵继全 《催化学报》2009,30(12):1243-1247
 利用 2-吡啶甲醛、6-甲基-2-吡啶甲醛或 6-异丙基-2-吡啶甲醛与对甲基苯胺缩合制得双氮席夫碱配体, 考察了席夫碱配体以及溶剂和温度对甲基三氧化铼 (MTO) 催化不同结构烯烃环氧化反应的影响. 结果表明, 这些席夫碱配体与 MTO 构成的催化剂体系在甲醇溶剂中的催化性能最好, 双氮配体能显著提高环氧化反应的选择性. 当以甲醇为溶剂, 环己烯为底物, 在 –10 oC 反应 12 h 时, 环己烯转化率和环氧化物选择性均可达 100%. 席夫碱的配位能力越强, 越有利于提高环氧化物选择性, 而其配位能力取决于吡啶环中 6-位取代基的电子和立体结构. 给电子能力较强和空间位阻较小的烷基对应的配体的配位能力较强.  相似文献   

8.
锰(Ⅱ)呋喃甲醛Schiff碱催化苯乙烯环氧化的研究   总被引:1,自引:0,他引:1  
自1979年Groves首先以金属卟啉模拟细胞色素P-450,实现烯烃的环氧化^[1]以来,仿单加氧酶催化环氧化烯烃就成为仿酶催化领域里的一个非常活跃的研究课题^[2-5],但在这些报道中所用的模型化合物均为金属卟啉及其衍生物或Mn-Salen及其衍生物,这些化合物高昂的价格极大地限制了其应用前景。呋喃甲醛(俗称糠醛)取之于米糠或玉米芯,价格便宜且非石化产品,用它取代水杨醛不仅可降低成本,而且符合绿色化学要求。为此,本文选取了五种锰呋喃甲醛Schiff碱配合物作为模型化合物,以NaOCI为氧化剂,催化苯乙烯环氧化。讨论了配体结构、氧化物的pH值、轴配体、反应时间对催化环氧化反应的影响。  相似文献   

9.
本文合成了N,N’-双(2’-羟基苯乙酮)缩乙二胺、N,N’-双(2’-羟基苯乙酮)缩1,2-丙二胺、N,N’-双(2’-羟基苯乙酮)缩1,3-丙二胺和N,N’-双(2’-羟基苯乙酮)缩邻苯二胺四种Schiff配体以及它们的锰(Ⅲ)配合物1,2,3和4。并考察了这四种锰(Ⅲ)配合物作为催化剂,催化以NaOCl为氧源环氧化苯乙烯和环己烯的反应的性能。同时考察了反应温度、助配体、NaOCl的浓度以及pH值对催化环氧化反应的影响。  相似文献   

10.
项萍  陈龙海  邬金才  唐宁 《化学研究》2008,19(4):97-101
合成了在5,5’位上分别含羟基叔胺基和酯基叔胺基取代基的新型手性水杨醛Schiff碱的Salen Mn(Ⅲ)配合物1~4.在CH2Cl2/H2O反应体系中,以吡啶氮氧化物(PyNO)为助催化剂,NaCl0为氧化剂,考察了配合物1—4对苯乙烯环氧化的催化性能.以氯化-双[3-(叔丁基)-5-(N,N-二(乙醇基)氨基亚甲基)水杨醛]缩(1r,2R)-二苯基乙二胺[N,N’,O,O’]锰(Ⅲ)2和氯化-双[3-(叔丁基)-5-(N,N-二(乙酰乙酯基)氨基亚甲基)水杨醛]缩(1R,2R)-二苯基乙二胺[N,N’,O,O’]锰(11I)4为例,研究了不同的离子液体[BMIM]PF6和[BMIM]BF4对苯乙烯环氧化反应的影响.结果显示,两种离子液体的加入均能使催化剂循环使用,在离子液体[BMIM]PF。中,配合物2和4催化得到的环氧化物ee%值分别为53.2%和55.8%,且催化剂可以重复使用四次,效果好于在离子液体[BMIM]BF4中对苯乙烯的催化的影响.  相似文献   

11.
Six-coordinated chiral Ru(II) Schiff base complexes of the type [RuLX(Y)2] where L=terdentate chiral Schiff bases derived from -tyrosine, -phenylalanine with salicylaldehyde, 3-tertiary-butyl-, 3,5-di-tertiary-butyl-, 3,5-dichloro- and 3,5-dinitrosalicylaldehyde, X=PPh3 and Y=H2O have been investigated as catalysts for enantioselective epoxidation of styrene, 4-chloro-, 4-nitro- and 4-methylstyrene in fluorobenzene in order to explore the efficiency of catalytic system by varying the substituents on the ligand moiety of the catalysts as well as on the substrates using iodosyl benzene as terminal oxidant. Much better results were obtained with catalyst 5 and 10 with 4-nitrostyrene. The enantiomeric excess of the resulting epoxide was evaluated by chiral capillary column.  相似文献   

12.
非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(Ⅰ)   总被引:4,自引:0,他引:4  
研究了温和条件下以亚碘酰苯为氧源,非对称性的和对称性的Mn(Ⅲ)Schiff碱配合物[Mn(Ⅲ)(CBP-phen-Xsal)Cl,X=H,Cl,Br,NO2,CH3,OCH3]和[Mn(Ⅲ)(CBP-R-CBP)Y,R=CH2CH2-,-CH(CH3)CH2-,-C6H4-;Y=Cl,OCH3]催化非官能性烯烃苯乙烯、环己烯和α-甲基苯乙烯的环氧化反应.结果表明,非对称配合物Mn(Ⅲ)(CBP-phen-Xsal)Cl是一个良好的催化非官能性烯烃环氧化反应的催化剂体系;中心金属离子Mn(Ⅲ)的电子结合能越小,催化环氧化效果越好;对上述3种烯烃环氧化物最好收率分别达到73%、100%和92%.  相似文献   

13.
To be used as templates for nanostructured thermosets, a commercial poly(styrene‐b‐isoprene‐b‐styrene) (SIS) block copolymer (BCP) was epoxidized by three different epoxidation procedures. An exhaustive analysis of methodologies using metal catalyzed/hydrogen peroxide, dimethyldioxirane (DMDO), and meta‐chloroperbenzoic acid (m‐CPBA) was performed to obtain reactive BCPs. The DMDO approach was the best strategy to obtain highly epoxidized SIS BCP (85 mol %) without formation of side products. Careful control in BCP epoxidation by metal catalyzed/hydrogen peroxide and m‐CPBA approaches led to a maximum epoxidation degree (ED) of approximately 60 mol % without the formation of side products. The ED by metal catalyzed/hydrogen peroxide strategy could be further increased to 69 mol %, but a significant amount of crosslinking, ring opening, and polymer chain scission reactions were detected by spectroscopic and chromatographic techniques. The miscibility of epoxidized BCPs with diglycidyl ether of bisphenol‐A epoxy system before and after curing was analyzed to develop nanostructured epoxy thermosets. For ED higher than 69 mol %, BCPs were miscible, while those with lower ED presented macrophase separation. Highly epoxidized BCPs obtained by the DMDO methodology were successfully used to obtain ordered nanodomains inside the epoxy matrix, as determined by atomic force microscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
任通  闫亮  张汉鹏  索继栓 《分子催化》2003,17(4):310-312
环氧化合物作为有机合成中间体具有广泛应用,催化烯烃环氧化一直是催化化学中的一个重要课题[1~2].尽管已经报道了以过酸、过氧化氢、烷基过氧化物、或分子氧为氧化剂,以金属配合物(通常为钌、钼、钛的配合物)为催化剂的反应体系,但对环氧化物的选择性却很低[3].另外,除了需探索具有高选择性的催化体系外,应用分子氧或空气作为氧化剂更适宜于经济和安全的要求.目前,在以分子氧作为氧化剂,均相催化烯烃环氧化的研究中,应用醛类化合物作为氧转移试剂是一种有效的和方便的促进烯烃环氧化的方法[4].但是,均相催化剂难于分离和重复使用,因此…  相似文献   

15.
Ethene was co- and terpolymerized with 1-octene and styrene using the methylalumoxane (MAO) activated halfsandwich metallocene Me2Si(Me4Cp)(N-t.-butyl)TiCl2(Cp = cyclopentadienyl, Me = methyl) as catalyst. At temperatures of 40 and 60°C styrene concentration was varied in order to investigate the influence of the comonomers. Despite decreasing the overall activity with respect to ethene/1-octene copolymerization, polymerization activity was found to exibit a relative maximum with increasing styrene concentration. An explanation is given taking two different comonomer effects into account. Low styrene concentration promoted higher 1-octene incorporation compared to ethene/1-octene copolymerization but significantly lowered the molecular weight of the terpolymers. With constant ethene and 1-octene concentration it was possible to produce ethene/1-octene/styrene terpolymers with styrene content varying from 0 to 25 mol % and 1-octene content varying from 8 to 21 mol %. All terpolymers were amorphous. With constant ethene content it was found possible to vary their glass transition temperature with 1-octene/styrene molar ratio incorporated in the terpolymer. 13C-NMR spectroscopic microstructure analysis showed that no styrene/1-octene sequences were found in the terpolymer backbone. Furthermore terpolymerizations were conducted successfully incorporating norbornene, 1,5-hexadiene and propene as monomers in terpolymertization with ethene and styrene. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2549–2560, 1997  相似文献   

16.
A series of styrene derivatives were synthesized from aromatic substances by Friedel-Crafts acylation, reduction, and dehydration. Alternating copolymers of styrene derivatives and carbon monoxide were prepared in the presence of a palladium(II) catalyst. The characterization of the polyketones produced was performed by use of 1H-NMR, IR, WXRD, and EA methods. The thermal degradation of the regular alternating copolymer of carbon monoxide and styrene (STCO) has been studied by thermal gravimetry (TG). The TG spectra of solid samples were recorded both in nitrogen and in air. The degradation reaction order and activation energy were determined. The photodegradation of STCO was investigated. In addition, the block copolymerization of STCO with methyl methacrylate under UV irradiations was also studied. It is found that the tertiary amine can promote this photopolymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1283–1291, 1997  相似文献   

17.
The photopolymerization of several di- and tetrafunctional (meth)acrylic monomers in the presence of a styrene–butadiene–styrene polymeric matrix (SBS) has been studied. Electron spin resonance spectroscopy (ESR) and differential scanning photocalorimetry (photo-DSC) were used as monitoring techniques to identify the photogenerated radicals and analyze photopolymerization profiles, radical environments, and radical secondary reactions. The study of the photopolymerization and/or photocrosslinking reactions of these monomers in the solid media was carried out by taking into consideration different factors, such as the influence of both monomer and photoinitiator structures on the hydrogen abstraction in the binder with formation of benzylic and allylic radicals, the polymerization of the monomers itself and the hydrogen abstraction reaction in the polymerized acrylic chains. Finally, irradiation of the system SBS/photoinitiator in the absence of monomer was also accomplished. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2775–2783, 1998  相似文献   

18.
The copolymerization of styrene with two polymerizable surfactants (surfmers) based on maleic acid (dodecyl sodium sulfopropyl maleate and tetradecyl sodium sulfopropyl maleate) was studied in batch emulsion polymerizations. The surfmer conversion was obtained by serum replacement with water and subsequent analysis of the recovered, unreacted surfmers with two-phase titration. It was found that both surfmers copolymerized well with styrene and their partial conversion was higher than that of styrene. These results are contradictory to what was found before in the literature using ultrafiltration with methanol, and the differences are explained on the basis of oligomer formation: The oligomers formed are detected if the latices are washed with methanol. It was found that at the end of the polymerization (almost complete conversion of both styrene and surfmer) only 45% of the surfmer groups were present on the particle surface, which is in agreement with a high conversion of the surfmer at the beginning of the reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2561–2568, 1997  相似文献   

19.
The synthesis of a Mo(VI) Schiff base complex, cis-[MoO2{(4,6-bis(tert-butyl)-2-{(benzyl)iminomethyl}phenolate)2}], cis-[MoO2(L)2] where L = 4,6-bis(tert-butyl)-2-{(benzyl)iminomethyl}phenol, derived from benzylamine and 3,5-di-tert-butylsalycilaldehyde is reported. Full characterization of this complex was accomplished with elemental analyses, spectroscopic studies (NMR, IR and electronic) and X-ray structure analysis. This complex was tested as a catalyst for the homogeneous oxidation of olefins. The Mo(VI) complex is catalytically active for the epoxidation of aliphatic substrates at 80 °C, yielding the epoxide as the sole product in yields up to 100% and turnover numbers up to 5000. Under the optimized conditions styrene was oxidized in an 81% conversion to produce styrene oxide, benzaldehyde, and acetophenone.  相似文献   

20.
A monomer having dibenzothiophene moiety, 2-vinyldibenzothiophene (1), was prepared by the Ni-catalyzed cross-coupling reaction of vinyl bromide with the Grignard reagent of 2-bromodibenzothiophene. The radical homopolymerization of 1 and the copolymerization with styrene were carried out at 60°C in toluene (1.0M) for 20 h using AIBN (5 mol %) as an initiator to obtain the corresponding polymers in high yields. Thermal analyses of the copolymers showed that both 10% weight loss and glass transition temperatures increase when increasing the content of 1 unit. The monomer reactivity ratio was evaluated as r1 = 2.55 (1) and r2 = 0.16 (styrene). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2813–2819, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号