首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicone/titanium dioxide (TiO2) composite sheets were prepared from TiO2 particles and silicone elastomer by a compression-molding process at 140 °C. The particles were produced through sol-gel method, and emulsion technique consecutively. The prepared composite sheets with thickness of 0.8 mm had ultraviolet radiation protection property such that the transmission of ultraviolet (UV) B ray through the sheets was less than 1%. The UVA ray transmitted the sheets in the range of 0.02–4% at 320 nm and 2–43% at 400 nm, depending on the amount of TiO2 emulsion presented in the silicone elastomer. The composite sheets still remained transparent since the transmission of the visible light through the sheets was up to 60%. On the other hand, the transmissions of UVB ray, UVA ray, and visible light through the pure silicone elastomer sheets were in the range of 47–58%, 58–71%, and 71–88%, respectively. Comparable with silicone elastomer sheets, the addition of TiO2 emulsion resulted in the composite sheets with higher strain and lower modulus; however, these differences in tensile properties were up to the amount of the emulsion in the silicone elastomer.  相似文献   

2.
A novel TiO2 nanotube array/CdS nanoparticle/ZnO nanorod (TiO2 NT/CdS/ZnO NR) photocatalyst was constructed which exhibited a wide‐absorption (200–535 nm) response in the UV/Vis region and was applied for the photoelectrocatalytic (PEC) degradation of dye wastewater. This was achieved by chemically assembling CdS into the TiO2 NTs and then constructing a ZnO NR layer on the TiO2 NT/CdS surface. Scanning electron microscopy (SEM) results showed that a new structure had been obtained. The TiO2 NTs looked like many “empty bottles” and the ZnO NR layer served as a big lid. Meanwhile the CdS NPs were encapsulated between them with good protection. After being sensitized by the CdS NPs, the absorption‐band edge of the obtained photocatalyst was obviously red‐shifted to the visible region, and the band gap was reduced from its original 3.20 eV to 2.32 eV. Photoelectric‐property tests indicated that the TiO2 NT/CdS/ZnO NR material maintained a very high PEC activity in both the ultraviolet (UV) and the visible region. The maximum photoelectric conversion efficiencies of TiO2 NT/CdS/ZnO NR were 31.8 and 5.98 % under UV light (365 nm) and visible light (420–800 nm), respectively. In the PEC oxidation, TiO2 NT/CdS/ZnO NR exhibited a higher removal ability for methyl orange (MO) and a high stability. The kinetic constants were 1.77×10?4 s?1 under UV light, which was almost 5.9 and 2.6 times of those on pure TiO2 NTs and TiO2 NT/ZnO NR, and 2.5×10?4 s?1 under visible light, 2.4 times those on TiO2 NT/CdS.  相似文献   

3.
Surface modified TiO2 nanoparticles dissolved in toluene were encapsulated in PMMA by in situ radical polymerization of methyl methacrylate initiated by 2,2′-azobisisobutyronitrile. The surface modification of the TiO2 nanoparticles (average diameter of 4.5 nm) was achieved by the formation of a charge transfer complex between TiO2 nanoparticles and 6-palmitate ascorbic acid. The surface modified TiO2/nanoparticles were characterized using UV−Vis and FTIR spectroscopy, while the obtained polymer nanocomposites were characterized using reflection and 1H NMR spectroscopy, as well as gel permeation chromatography. The influence of the TiO2 nanoparticles on the thermal properties of the PMMA matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. The glass transition temperature of the polymer was not influenced by the presence of the nanoparticles while the thermal stability was significantly improved.  相似文献   

4.
The CdS modified TiO2/Fe3O4 photocatalysts were prepared by sol–gel and immersion methods. The morphological, structural and optical properties of as-prepared samples were characterized by X-ray diffraction (XRD), UV–Vis absorption spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The TEM observation showed that the surface of magnetite particles (Fe3O4) were coated by CdS–TiO2 layer as loose clusters, and average diameter of composites particles was about 250 nm. UV–Vis absorption spectra indicated that CdS–TiO2/Fe3O4 composites had pronounced red-shift compared with that of TiO2/Fe3O4. The CdS–TiO2/Fe3O4 composites exhibit higher photocatalytic activity than pure TiO2 and TiO2/Fe3O4 for the degradation of Reactive Brilliant Red X-3B dye (X-3B) aqueous solution under simulated sunlight, and the optimum content of CdS is 1.0 % (mol ratio of CdS to TiO2). In addition, a gradual loss of photocatalytic activity can be observed in reusability test of CdS–TiO2/Fe3O4 composites, and degradation of X-3B reached still to 78.9 % after five runs.  相似文献   

5.
In this paper, poly(methyl methacrylate‐co‐sodium sulfopropyl lauryl maleate‐co‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylpropoxy) benzophenone)/TiO2 (i.e., poly(MMA‐co‐M12‐co‐BPMA)/TiO2) composite particles were prepared by ultrasonically initiated emulsion polymerization. To study the dispersion and UV‐stability of the composite particles, laser diffraction particle size analyzer (LDPSA), ultraviolet‐visible absorption spectroscopy (UV‐vis), UV‐vis diffuse reflectance spectroscopy (DRS), differential scanning calorimeter (DSC), and the weight loss measurement were used. The results indicate that the dispersion of the poly(MMA‐co‐M12‐co‐BPMA)/TiO2 composite particles prepared by ultrasonically initiated emulsion polymerization is good. And the composite particles can absorb UV light; the ultraviolet absorption strength of poly(MMA‐co‐M12‐co‐BPMA) grafted onto the surface of TiO2 has not changed after UV irradiation while that of PMMA changed significantly. The UV absorption strength, weight loss, and Tg changes are in the order PMMA> poly(MMA‐co‐M12‐co‐BPMA) >PMMA grafted onto TiO2> poly(MMA‐co‐M12‐co‐BPMA) grafted onto TiO2. These results show that the ultrasonically initiated emulsion polymerization will enhance the UV stability of composite particles, and the UV‐stability of PMMA can be enhanced by the introduction of the organic UV‐stabilizer BPMA and the inorganic UV‐stabilizer titanium dioxide into the PMMA chains by covalent bond, and the effect of the BPMA and the TiO2 used together is better than that used, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Before polymerization, the introduction of double bonds onto the surface of the TiO2 particles was achieved by the treatment of the TiO2 particles with the silane-coupling agent. Via in-situ emulsion polymerization, the poly(methyl methacrylate) (PMMA)/titanium oxide (TiO2) composite particles were prepared by graft polymerization of MMA from the surface of the modified TiO2 particles. The structure of the obtained PMMA/TiO2 composite particles was characterized using fourier transform infrared spectra (FT-IR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and size excluding chromatography (SEC). The morphology of the obtained PMMA/TiO2 composite particles was observed by transmission electron microscope (TEM). The results of FT-IR and TGA measurements show that PMMA is successfully grafted from the surface of the TiO2 particles and that the percentage of grafting and the grafting efficiency can reach 208.3% and 96.6%, respectively. At the same time, the TGA and DSC measurements indicate an enhancement of thermal stability. TEM images demonstrate a better dispersion of the TiO2 particles in the composite latex. In addition, UV-visible absorption measurements show that the PMMA/TiO2 composite particles can absorb over 95% UV light at 210–400 nm wavelength.  相似文献   

7.
Well‐oriented ZnO nanorods (NRs) arrays were grown on Si, alumina, quartz, and FTO substrates through a ZnO seed layer followed by low temperature wet chemical process. The influence of sputtered ZnO seed layer thickness (100, 50, 32, and 16 nm), annealing temperature and CuOx coverage on the characteristics of ZnO NRs were investigated in this study. The crystalline structural, chemical, morphological, optical, and electrical properties of ZnO NRs arrays were studied by X‐ray diffraction (XRD), field emission‐ scanning electron microscopy equipped by energy dispersive X‐ray spectroscopy (FE‐SEM/EDX), Raman scattering, UV/Vis ‐ near IR absorption spectroscopy and current‐voltage characteristic. XRD and Raman spectra measurement revealed that the synthesize ZnO displayed hexagonal wurtzite structure. The individual rod diameter, density, and orientation can be controlled by varying the seed layer thickness. The mean diameter and maximum length of ZnO NRs are around 55–66 nm and 282 nm, respectively. ZnO NRs/ ZnO thin film structure shows optical switching and negative differential resistance behavior as applicable to ON/OFF gate and memory devices.  相似文献   

8.
Highly porous polypyrrole (PPy)‐coated TiO2/ZnO nanofibrous mat has been successfully synthesized. The core TiO2/ZnO nanofibers have an average diameter of ca. 100 nm and the shell of ultrathin PPy layer has a thickness of ca. 7 nm. The NH3 gas sensor using the as‐prepared material exhibited a fast response over a wide dynamic range and high sensitivity with a detection limit of 60 ppb (S/N=3). Compared to conventional pristine PPy film, the improved performance in NH3 detection can be attributed to the free access of NH3 to PPy and a minimized gas diffusion resistance through the ultrathin PPy layer.  相似文献   

9.
Polycarbonate (PC)-ZnO films with different percentages of ZnO were prepared by a solution stirring technique and subjected to ultraviolet (UV; λ = 254 nm) irradiation. Structural parameters of the samples and the effects of UV irradiation on the surface properties of the PC and PC-ZnO nanocomposites were evaluated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle (WCA) measurements, and a Vickers microhardness (HV) tester. The XRD patterns of the nanocomposite films were found to show an increase in crystallinity with the increasing ZnO nanoparticles percentage. The WCA was found to be reduced from 90° to 17° after 15 h of UV irradiation, which could be ascribed to the oxidation of the surface of the samples during the irradiation and exposure of the ZnO nanoparticles, a result that is also supported by the obtained XPS data. The microhardness value of the PC-ZnO films including 30 wt.% ZnO enhanced considerably after UV radiation, which can also be attributed to the exposition of the ZnO nanoparticles after photodegradation of the PC superficial layer of the nanocomposite films.  相似文献   

10.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

11.
The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemicalmethod, using zinc chloride and titanium sulphate as the starting materials. The as-synthesized products were characterized by X-ray diffraction, field emission scanning electronmicroscopy and room temperature photoluminescence measurement. The photocatalytic ac-tivity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti3O5 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very effcient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.  相似文献   

12.
The plasmonic Ag-TiO2 (with 0.5 wt% Ag) photocatalyst was prepared on P25 TiO2 surface. The presence of AgNPs on the titania was indicated by the UV–vis spectrum, which showed a plasmonic absorbance band in the visible range (λ max?=?455 nm). XPS measurements suggested that Ag was in metallic (Ag) and in oxide forms on TiO2. Ag-TiO2 photocatalyst and TiO2 were embedded in [poly(ethyl acrylate-co-methyl methacrylate; p(EA-co-MMA)] copolymer to attain mechanically stable, photocatalytically active nanocomposite films. The photooxidation of ethanol was slower on the photocatalyst/polymer nanocomposites, but it could be significantly improved by irradiating them with UV light. The photoaging was applied as a post-preparation treatment to improve the photocatalytic activity of the nanocomposite films. Changed surface morphology and the partial destruction of the polymer were supported by AFM and FTIR results. Contact angle measurements were used to determine the surface free energies of the prepared and the photoaged nanocomposite films.  相似文献   

13.
This study was conducted to investigate efficiency of TiO2nanomaterial as a novel environment-friendly disinfectant to control avian influenza (AI) by its photochemical sterilization ability. Anatase nano-TiO2sol, a neutral, viscous aqueous colloid of 1.6% TiO2, was synthesized from peroxotitanic acid solution according to the Ichinose method. Transmission electron microscope images showed that the TiO2particles were spindle-shaped with an average size of 50 nm. X-ray diffraction patterns revealed that the crystal phase of TiO2particles was anatase type with photocatalytic effect. A photocatalytic film of nano-TiO2sol was tested as a means of inactivating H9N2avian influenza virus (AIV). Inactivation capabilities were examined with 365 nm ultraviolet (UV) radiation under black light by adjusting the UV intensity, the UV irradiation time and the quantity of AIV. The titer change of AIV was determined by hemagglutination tests. Cytopathic effect of Madin Darby canine kidney (MDCK) cells was monitored by inverted fluorescence microscope. The results showed that anatase nano-TiO2sol significantly inactivated AIV under UV irradiation of 365 nm. The inactivation of AIV viruses reached up to 100%. Therefore, anatase nano-TiO2sol is a potentially environment-friendly antivirus agent to prevent AI.  相似文献   

14.
采用直接沉淀法制备了异丁酸修饰纳米氧化锌微粒,用XRD、TEM、XPS、IR、UV-Vis、PL等检测手段对样品进行结构表征。结果表明:所制的样品为纤锌矿结构的氧化锌颗粒,粒度约为20 nm,异丁酸分子与表面锌原子以双齿螯合的形式结合。 Zn(II)2p3/2的结合能与Zn的标准峰位相比,向低结合能方向移动了1.5 eV,其在可见光区比紫外区的荧光发射显著增强。分散性实验表明,样品在有机溶剂中有良好的分散性。  相似文献   

15.
Zinc oxide nanoparticles, with an average size of about 40 nm, were encapsulated by polystyrene using in situ emulsion polymerization in the presence of 3-methacryloxypropyltrimethoxysilane (MPTMS) as a coupling agent and polyoxyethylene nonylphenyl ether (OP-10) as a surfactant. Polymerization mechanism of nanocomposite latex was discussed. Transmission electron microscopy (TEM) proved the presence of ZnO nanoparticle appeared to be monodisperse in nanosize in polymer composite particles. ZnO/PS nanocomposites were characterized by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FT-IR and XPS revealed that the surface of ZnO particle was successfully grafted by PS through the link of the coupling agent between ZnO and polymer. TGA and DSC results indicated an enhancement of thermal stability of composite materials compared with the pure polymer. SEM (scanning electron microscope) images showed a perfect dispersion of the ZnO particles in latex film. In addition, UV-visible absorption measurements demonstrated that the ZnO/PS composite coatings display a perfect performance of absorbing UV light.  相似文献   

16.
Amorphous TiO2-coated ZnO nanoparticles were prepared by the solvothermal synthesis of ZnO nanoparticles in ethanol and the followed by sol-gel coating of TiO2 nanolayer. The analyses of X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the resultant ZnO nanoparticles were hexagonal with a wurtzite structure and a mean diameter of about 60 nm. Also, after TiO2 coating, the TEM images clearly indicated the darker ZnO nanoparticles being surrounded by the lighter amorphous TiO2 layers. The zeta potential analysis revealed the pH dependence of zeta potentials for ZnO nanoparticles shifted completely to that for TiO2 nanoparticles after TiO2 coating, confirming the formation of core-shell structure and suggesting the coating of TiO2 was achieved via the adhesion of the hydrolyzed species Ti-O to the positively charged surface of ZnO nanoparticles. Furthermore, the analyses of Fourier transform infrared (FTIR) and Raman spectra were also conducted to confirm that amorphous TiO2 were indeed coated on the surface of ZnO nanoparticles. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous TiO2-coated ZnO nanoparticles at 375 nm gradually decreased with an increase in the Ti/Zn molar ratio and the time for TiO2 coating, and the emission intensity of ZnO cores could be significantly enhanced by the amorphous TiO2 shell.  相似文献   

17.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   

18.
Poly(l-lactic acid)-TiO2 nanoparticle nanocomposite films were prepared by incorporating surface modified TiO2 nanoparticles into polymer matrices. In the process of preparing the nanocomposite films, severe aggregation of TiO2 nanoparticles could be reduced by surface modification by using carboxylic acid and long-chain alkyl amine. As a result, the nanocomposite films with high transparency, similar to pure PLA films, were obtained without depending on the amount of added TiO2 nanoparticles. A TEM micrograph of the nanocomposite films suggests that the TiO2 nanoparticles of 3-6 nm in diameter were uniformly dispersed in polymer matrices. Photodegradation of PLA-TiO2 nanoparticle nanocomposite films was also investigated. The results showed that nanocomposite films could be efficiently photodegraded by UV irradiation in comparison with pure PLA.  相似文献   

19.
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO2 nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO2 nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum and increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO2 nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO2 nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated.  相似文献   

20.
TiO2 nano particles with photo catalytic property were mixed with silica alkoxides solution with HAuCl4/4H2O. STS02 (purchased from Ishihara Sangyo Kaisha, Ltd.) was used as TiO2 nano particles. The average size of TiO2 nano particles was 7 nm in diameter. The gel film coated on glass substrate was heated and then HAuCl4/4H2O was thermally reduced at 390 degree. The coated silica gel film doped with HAuCl4/4H2O and TiO2 nano particles was turned into light blue from colorless gel film after heat treatment. The optical absorption spectrum showed the absorption peak of the film heated at 390 degree shifted to at about 650 nm compare to SiO2 film doped with Au nano particles without TiO2 nano particles that had absorption peak at 542 nm. On the other hand, the film formed from coating solution incorporated TiAA (titanium tetraisopropoxide chelated by acetyl acetone) as TiO2 source instead of TiO2 nano particles had absorption peak at 550 nm. That means there was no effect on formation of Au nano particles when TiAA was incorporated. The average size of the particles was found to be about 23 nm in diameter by TEM observation. Furthermore EDX (Energy Dispersive X-ray Fluorescence Spectrometer) analysis of nano particles in the film indicated that Au-TiO2 nano hybrid particles were formed. Simulation results also supported that the size in diameter of Au nano particles had little influence on the absorption coefficient of the silica film doped with Au nano particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号