首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The deformation mechanisms during fracture of a Nylon 6/ABS blend compatibilized with an imidized acrylic polymer were compared to those of an uncompatibilized blend. A postmortem examination of deformed zones in samples loaded to failure in a double-notch four-point-bend geometry was made using transmission electron microscopy (TEM). For the compatibilized blend, cavitation of the rubber particles followed by massive shear yielding of the polyamide matrix was concluded to be the sequence of events leading to toughness; while, for the brittle uncompatibilized blend, the evidence indicated that a lack of adhesion at the Nylon-ABS interface prevented the rubber particles from cavitating and the subsequent plastic deformation of the polyamide matrix. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Blends of nylon-6 and up to 20% rigid aromatic fractal polyamides (FPs) were prepared by precipitation from a mutual solvent and by two melt-processing procedures. In general, no grafting of the flexible linear nylon chains onto the rigid FPs took place, but in several instances of melt-blending of nylon with FPs whose amine end-groups were exposed, a low level of grafting occurred. The glass transition temperature and the tensile modulus and yield strength of the blends were greatly elevated as function of the FP concentration in the blends. This was demonstrated to be caused by the openness and rigidity of the FPs, and the connectivity of the FP segments through rigid branchpoints. The great porosity of the FPs allows the chains of the amorphous fraction of the nylon to interpenetrate and pass through the FPs, and the stiff segments of the FPs to suppress the chain motions of the nylon, which accounts for the enhanced glass transition temperature (Tg) and tensile properties. When non-porous amorphous silica particles or stiff linear or essentially unbranched zigzag polyamides were blended with the nylon, the Tg of the nylon either did not change at all or changed only very little. Several analytical procedures were used to verify that the nylon chains occupied most of the free space in the pervaded volumes of the FPs in the as-prepared blends and filled this space completely when these blends were compression-molded. The point where the FPs filled all the volume of the amorphous fraction of the nylon-6 was reached between 5 and 7.5% FP concentration. Below this, traces of the original nylon-6 Tg could be occasionally detected. Above it, only the high Tg of the nylon chains interpenetrated in the FPs was detected.  相似文献   

3.
The crystallization behavior of Nylon-6 and the interaction in Nylon-6/nanoclay/functionalized polyolefin blends were investigated by X-ray diffraction and Fourier transform infrared spectroscopy. For samples without any thermal history, the interaction between Nylon-6 and nanoclay or the interaction between Nylon-6 and functionalized polyolefin favors the formation of γ form crystal. In contrast, the presence of both nanoclay and functionalized polyolefin together in Nylon-6 was found to have an antagonistic effect on each other's ability to promote the formation of γ form crystal. This was attributed to the complex interactions between the constituents. The crystallization behavior of Nylon-6 in Nylon-6/nanoclay/functionalized polyolefin blends is clearly affected by the cointeraction of these effects. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1494–1502, 2007  相似文献   

4.
Two grades of low density polyethylene (LDPE) were blended with polyamide-6 (PA) in the 75/25 and 25/75 wt/wt ratios and shaped into ribbons with a Brabender single screw extruder. An ethylene-acrylic acid copolymer (EAA) was used in the 2 phr concentration as a compatibilizer precursor (CP). The morphology of the ribbons and its evolution during high temperature annealing were investigated by scanning electron microscopy (SEM). The results confirmed that EAA does actually behave as a reactive compatibilizer for the LDPE/PA blends. In fact, in the presence of EAA, the interfacial adhesion is improved, the dispersion of the minor phase particles is enhanced and their tendency toward fibrillation is increased, especially for the blends with the higher molar mass LDPE grade. The mechanical properties of the latter blends were found to be considerably enhanced by the addition of EAA, whereas the improvement was relatively modest for the blends with the lower molar mass LDPE. The fracture properties of double end notched samples of the ribbons prepared with the blends containing the lower molar mass LDPE grade were also studied. It was shown that, despite of the increased interfacial adhesion caused by the presence of EAA, the latter plays a measurable positive effect on the fracture properties only for the blends with LDPE as the matrix.  相似文献   

5.
Blends of poly(hydroxy ester ether) (PHEE), a recently developed bisphenol A ether‐based synthetic biodegradable thermoplastic polymer, with a soybean protein isolate and two hydrolyzed wheat glutens were studied. Blends of the proteins with PHEE were produced from 20 to 70% by weight of protein content. Young's moduli of the protein/PHEE blends fall in the range of 0.8–1.5 GPa with tensile strengths ranging from 10 to 30 MPa. Critical stress‐intensity factors of the blends ranged from 2 to 9 MPa‐m1/2 depending on the amount of protein added. Morphological analysis indicated a moderate degree of adhesion between the protein and PHEE phases in the blends. In general, as the protein content was increased the materials lost ductility and failed in a brittle manner; however, the mechanical properties of several compositions were comparable to commercial thermoplastics such as polystyrene. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2324–2332, 2002  相似文献   

6.
Blends of Nylon-6 and block copolyetheramides with hard segments of Nylon-6 and soft segments of poly(tetramethylene ether) were prepared. The impact strength of the blends was enhanced by the presence of the block copolyetheramides as compared to the Nylon-6. Different block copolyetheramides exhibited different effects on the impact strength which could be described as the difference in compatibility between the Nylon-6 and the Nylon-6 segments of the block copolymers. The difference in compatibility was verified by the investigations of TEM and DSC. As the caprolactam content of the block copolyetheramides increased, the compatibility between the Nylon-6 and the Nylon-6 segments of the block copolymers was enhanced and the blends exhibited a higher impact strength in general. The heat deflection temperature of the blends decreased as the polyether content (depending on the type and the content of the block copolyetheramide) of the blends increased. When the polyether content was ≤ or 20 wt %, a small decrease in heat distortion temperature was found. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The PVC/ABS blends were degradated by means of isothermal thermogravimetry at temperatures at 210...240°C in nitrogen. Applying the stationary point method to the data obtained from thermogravimetric curves, apparent activation energy, preexponential factor and compensation parameter for each blend were calculated. The constancy of compensation parameters points to an unchanged mechanism of poly (vinyl-chloride) (PVC) thermal degradation in the presence of acrylonitrile butadiene-styrene (ABS). Upon increasing the fraction of ABS in the blend up to 50% only the kinetics of the process is changed.  相似文献   

8.
Immiscible ternary blends of PET/EVA/PP (PET as the matrix and (PP/EVA) composition ratio = 1/1) were prepared by melt mixing. Scanning electron microscope results showed core‐shell type morphology for this ternary blend. Binary blends of PET/PP and PET/EVA were also prepared as control samples. Two grades of EVA with various viscosities, one higher and the other one lower than that of PP, were used to investigate the effect of components' viscosity on the droplet size of disperse phase. The effect of interfacial tension, elasticity, and viscosity on the disperse phase size of both binary and ternary blends was investigated. Variation of tensile modulus of both binary and ternary blends with dispersed phase content was also studied. Experimental results obtained for modulus of PET/EVA binary blends, showed no significant deviations from Takayanagi model, where considerable deviations were observed for PET/PP binary blends. Here, this model that has been originally proposed for binary blends was improved to become applicable for the prediction of the tensile modulus of ternary blends. The new modified model showed good agreement with the experimental data obtained in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 251–259, 2010  相似文献   

9.
In this work, the relationships between composition and properties of Ny6/EVOH system were examined by means of several techniques and the results were interpreted in terms of level of compatibility. Blends of different ratio of Ny6 and EVOH have been processed in a laboratory‐based film blowing extrusion apparatus. Rheological measurements, FTIR and morphological analysis, and thermal and mechanical properties were carried out. Peculiar rheological, thermal, and mechanical behaviors were observed for the blend containing 25% by weight of EVOH. At this composition, FTIR analysis has pointed out that a minimum in molecular motion is achieved as a consequence of a maximum interaction of the polar groups (amide groups of Ny6 and hydroxyl groups of EVOH) involved. Moreover, gas permeability measurements on the blown films have been performed at T = 30°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2445–2455, 1999  相似文献   

10.
Nylon-6/polystyrene (PS) blends were reactively compatibilized by addition of various anhydride functionalized polystyrenes. The morphology of the blends was examined using a scanning electron microscopy (SEM) technique. The particle size of the dispersed styrenic phase was about 3.2 μm for the uncompatibilized 8/2 Nylon-6/PS blend while those of the compatibilized blends were decreased by as much as two orders of magnitude depending on the amount and type of the functionalized polystyrene (FPS) added. Several low-molecular weight polystyrenes with terminal anhydride groups, prepared by two different functionalization methods, were examined. The effect of molecular weight on particle size reduction depended on the basis of comparison, mass of additive, or moles of anhydride units. A high-molecular weight random copolymer of styrene and maleic anhydride was most effective when compared on a mass basis. The increase in adhesion between the Nylon-6 and the styrenic phases caused by the in situ reaction was evaluated by a lap shear technique. The free polystyrene, Nylon-6, and Nylon-FPS copolymer formed were separated by solvent extraction technique using formic acid and toluene. The extent of coupling reaction between the functionalized polystyrenes and Nylon-6 ranged from 25 to 43%. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
The preparation process-dependent phase morphology of blends composed of nylon 6 and acrylonitrile-butadiene- styrene(ABS)over a composition range of 30-70 wt% using a styrene-maleic anhydride(SMA)copolymer as the compatibilizing agent with a constant content(5phr)was investigated.The results of the scanning electron microscope (SEM)observation revealed that compared with the binary blends of nylon 6 and ABS,the existence of SMA caused a composition shift of phase inversion to a higher weight fraction of...  相似文献   

12.
SMA/蒙脱石纳米复合材料增容PA6/ABS共混体系   总被引:1,自引:0,他引:1  
采用原位插层法制备苯乙烯-马来酸酐交替共聚物/蒙脱石(SMA/MMT)纳米复合材料增容PA6/ABS共混体系,并与SMA及MMT的增容效果进行比较,运用TEM、SEM、DSC及XRD研究了增容剂SMA/MMT及MMT的增容机理.结果表明,采用SMA做增容剂,体系机械性能下降;MMT可使体系拉伸强度提高,但冲击强度下降;采用SMA/MMT纳米复合材料做为增容剂,可提高共混体系的强度及韧性.TEM、XRD、DSC及SEM研究结果表明,PA6/ABS/(SMA-MMT)体系中MMT主要分布于两相界面处,ABS及PA6分子链可进入MMT层间,形成类似于共聚物结构,起到增容剂的作用,从而降低分散相粒径,增加两相界面作用力,有利于体系力学性能的提高.PA6/ABS/MMT体系中MMT主要分布于连续相PA6中,虽然对分散相粒径影响较小,但增强了PA6相强度,使得体系力学性能提高.  相似文献   

13.
Polypropylene (PP) blends with acrylonitrile-butadiene-styrene (ABS) were prepared using the styrene-ethylene-butylene-styrene copolymer (SEBS) as a compatibilizing agent. The blends were prepared in a co-rotational twin-screw extruder and injection molded. Torque rheometry, Izod impact strength, tensile strength, heat deflection temperature (HDT), differential scanning calorimetry, thermogravimetry, and scanning electron microscopy properties were investigated. The results showed that there was an increase in the torque of PA6/ABS blends with SEBS addition. The PP/ABS/SEBS (60/25/15%) blend showed significant improvement in impact strength, elongation at break, thermal stability, and HDT compared with neat PP. The elastic modulus and tensile strength have not been significantly reduced. The degree of crystallinity and the crystalline melting temperature increased, indicating a nucleating effect of ABS. The PP/ABS blends compatibilized with 12.5% and 15% SEBS presented morphology with well-distributed fine ABS particles with good interfacial adhesion. As a result, thermal stability has been improved over pure PP and the mechanical properties have been increased, especially impact strength. In general, the addition of the SEBS copolymer as the PP/ABS blend compatibilizer has the advantage of refining the blend's morphology, increasing its toughness and thermal stability, without jeopardizing other PP properties.  相似文献   

14.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
The morphology of blends of styrenic polymers in a matrix of 75% Nylon-6 prepared in a Brabender Plasti-Corder was examined by scanning electron microscopy. Styrene/acrylonitrile copolymers (SAN) form smaller particles as the AN level increases owing to the corresponding decrease in the SAN–polyamide interfacial tension. Various styrenic polymers containing functional groups, maleic anhydride or oxazoline type, that can react with Nylon-6 during melt processing were added to the SAN phase which also led to a decrease in the particle size owing to the graft copolymer formed in situ. The effects of functional group type, amount of functional groups per chain, amount of functional polymer added, and the miscibility of the styrene/maleic anhydride (SMA) and SAN copolymers on the morphology of the styrenic phase in the Nylon-6 matrix are described. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
通过多单体熔融接枝的方法制备出了具有较高接枝率的ABS接枝物 (ABS g (MAH co St) ) ,并对其接枝机理进行了初步探讨 .研究表明 ,MAH、St接枝ABS时 ,反应主要发生在ABS中聚丁二烯的双键部位 .同时 ,当MAH与St的用量比约为 1:1时接枝率达到最高 .ABS g (MAH co St)作为尼龙 6 (PA6 ) ABS共混体系相容剂起到了良好的增容效果 .实验证明 ,相容剂使用前后 ,共混物的相区尺寸由几十 μm减小到 1μm以下 ,且分布更加均匀 ;共混物的拉伸强度和冲击强度等力学性能也同时得到均衡改善 .  相似文献   

17.
The effects of the addition of diblock copolymer poly(styrene‐b‐ethylene‐co‐propylene) (SEP) to isotactic polypropylene (iPP) on the morphology and mechanical properties were investigated. Phase morphologies of iPP/SEP blends up to a 70/30 weight ratio, prepared in Brabender Plasticoder, were studied with optical microscopy, scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction. The addition of 2.5 wt % SEP caused a nucleation effect (by decreasing the crystallite and spherulite size) and randomization of the crystallites. With further SEP addition, the crystallite and spherulite size increased because of prolonged solidification and crystallization and achieved the maximum in the 80/20 iPP/SEP blend. This maximum was a result of the appearance of β spherulites and the presence of mixed α spherulites in the 80/20 iPP/SEP blend. Dispersed SEP particles were irregular and elongated clusters consisting of oval and spherical core–shell microdomains or SEP micelles. SEP clusters accommodated their shapes to interlamellar and interspherulitic regions, which enabled a well‐developed spherulitization even in the 70/30 iPP/SEP blend. The addition of SEP decreased the yield stress, elongation at yield, and Young's modulus but significantly improved the notched impact strength with respect to the strength of pure iPP at room temperature. Some theoretical models for the determination of Young's modulus of iPP/SEP blends were applied for a comparison with the experimental results. The experimental line was closest to the Takayanagi series model. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 566–580, 2001  相似文献   

18.
Whiskers of poly(4-hydroxybenzoate) [poly(4-HBA)] were prepared by polycondensation of free 4-hydroxybenzoic acid with acetic anhydride and pyridine in a high boiling inert solvent. The purity of the monomer is decisive for the success of the synthesis. For a less pure 4-hydroxybenzoic acid, the preparation of acetylated oligomers with acetylchloride, followed by polycondensation of the isolated oligomers is a suitable alternative. Whiskers, with a solid-solid phase transition at 364°C were obtained, which is the highest temperature reported for this transition so far. Two batches of composites were prepared from nylon-6 using polyester whiskers with an alkaline or an acidic surface treatment. A third batch was prepared using poly(ester-amide) whiskers. The mechanical properties of these composites indicate that the surface treatment does not play any role, and that the poly(esteramide)s are inferior to the polyester whiskers, because they are not single crystals. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
The ability of various hydrogen bond-forming solvents to induce crystallinity in nylon-6I was studied using DSC, FTIR spectroscopy, and x-ray diffraction. Comparison was made with predictions using the solubility parameter, which is related to possibilities of interaction formation. General predicted tendencies agreed with experimental results, in agreement with proposed influence of solvent-polymer interactions in the solvent-induced crystallization process. FTIR investigation of polymers treated with methanol and methanol-d shows that polymer segments forming hydrogen bonds with solvent molecules crystallize preferentially. It is therefore concluded that hydrogen bond exchanges with the solvent favor chain rearrangements leading to crystallization. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Multiwalled carbon nanotubes (purified, p‐MWNT and ~ NH2 functionalized, f‐MWNT) were melt‐mixed with 50/50 cocontinuous blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene in a conical twin‐screw microcompounder to obtain conductive polymer blends utilizing the conceptual approach of double‐percolation. The state of dispersion of the tubes was assessed using AC electrical conductivity measurements and melt‐rheology. The rheological and the electrical percolation threshold was observed to be ~ 1–2 wt % and ~ 3–4 wt %, respectively, for blends with p‐MWNT. In case of blends with f‐MWNT, the rheological percolation threshold was observed to be higher (2–3 wt %) than p‐MWNT but the electrical percolation threshold remained almost same. However, the absolute values were significantly lower than blends with p‐MWNT. In addition, significant refinement in the cocontinuous morphology of the blends with increasing concentration of MWNT was observed in both the cases. Further, an attempt was made to understand the underlying concepts in relation to cocontinuous morphologies that how the geometrical percolation threshold which adversely suffered because of the attrition of tubes under prolonged shear contributed further in retaining the rheological percolation threshold. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1619–1631, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号