首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

2.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

3.
Acrylonitrile/pentyl acrylate (A/P) copolymers of different monomer composition were prepared by solution polymerization using benzoyl peroxide as initiator. Copolymer compositions were determined by elemental analysis and quantitative 13C1H‐NMR spectroscopy. The comonomer reactivity ratios, determined by both Kelen Tudos (KT) and nonlinear error in variables (EVM) methods are rA = 0.75 and rp = 0.45. 2‐D heteronuclear correlation spectroscopy (HSQC) was used to simplify the complex 1H spectra of A/P copolymers in terms of configurational and compositional sequences. The microstructure was obtained in terms of the distribution of A‐ and P‐ centered triad sequences from 13C1H‐NMR spectra of the copolymers. The copolymerization mechanism was found to follow a first order Markov Model. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 533–543, 1999  相似文献   

4.
Copolymerization of isobornyl methacrylate and methyl acrylate ( I/M ) is performed by atom transfer radical polymerization using methyl‐2‐bromopropionate as an initiator and PMDETA/CuBr as catalyst under nitrogen atmosphere at 70 °C. The copolymer compositions determined from 1H NMR spectra are used to determine reactivity ratios of the monomers. The reactivity ratio determined from linear Kelen–Tudos method and non‐linear error‐in‐variable method, are rI = 1.25 ± 0.10, rM = 0.84 ± 0.08 and rI = 1.20, rM = 0.82, respectively. 1D, distortion less enhancement by polarization transfer and 2D, heteronuclear single quantum coherence, and total correlation spectroscopy NMR experiments are employed to resolve highly overlapped and complex 1H and 13C{1H} NMR spectra of the copolymers. The carbonyl carbon of I and M units and methyl carbon of I unit are assigned up to triad compositional and configurational sequences, whereas β‐methylene carbons are assigned up to tetrad compositional and configurational sequences. Similarly, methine carbon of I unit is assigned up to triad level. The couplings of carbonyl carbon and quaternary carbon resonances are studied in detail using 2D hetero nuclear multiple bond correlation spectra. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Atom transfer radical polymerization conditions were optimized and standardized with different initiator and catalyst systems. Acrylonitrile/n‐butyl acrylate copolymers were synthesized with 2‐bromopropionitrile as the initiator and CuCl/Cu(0)/2,2′‐bipyridine as the catalyst system. Variations of the feed composition led to copolymers with different compositions. The number‐average molecular weight and the polydispersity index were determined by gel permeation chromatography. Quantitative 13C{1H} NMR was employed to determine the copolymer composition. The reactivity ratios calculated with a methodology based on the Mao–Huglin terminal model were rA = 1.30 and rB = 0.68 for acrylonitrile and n‐butyl acrylate, respectively. The reactivity ratios determined by the modified Kelen–Tudos method were rA = 1.29 ± 0.01 and rB = 0.67 ± 0.01. 13C{1H} NMR and distortionless enhancement by polarization transfer (DEPT‐45, 90, and 135) were used to distinguish methyl, methylene, methine, and quaternary carbon resonance signals. The overlapping and broad signals of the copolymers were assigned completely to various compositional and configurational sequences by the correlation of one‐dimensional (1H, 13C{1H}, and DEPT) and two‐dimensional (heteronuclear single quantum coherence, total correlation spectroscopy, and heteronuclear multibond correlation) NMR spectral data. The complete spectral assignments of carbonyl and nitrile carbons were performed with the help of heteronuclear multibond correlation spectra. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2810–2825, 2005  相似文献   

6.
All relevant 13C NMR signals of two series of seven homogeneous ethylene–propylene copolymers were used to fit the second‐order Markov reactivity ratios of the catalysts and the theoretical feeds. The copolymers cover a very broad range of comonomer incorporations, from about 10 to 93%, and show only primary (1,2) insertions. For both series, solutions are found with reliabilities >>99.5%. The reactivity ratios, r112 = 2.54, r121 = 0.12, r212 = 2.05, and r221 = 0.29 for the used Zirconocone and r112 = 1.69, r121 = 0.32, r212 = 1.56, and r221 = 0.51 for the hafnocene, provide direct information about the metallocenes, the kinetics, and the chain microstructure. With these results, the direct peak method demonstrates that the use of all relevant 13C NMR peaks enables accurate second‐order Markov modeling, revealing subtle differences between copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 747–755, 2006  相似文献   

7.
Glycidylmethacrylate/vinyl acetate copolymers were prepared by solution polymerization with benzene as a solvent and benzoyl peroxide as an initiator. Copolymer compositions were determined from 1H NMR spectra, and comonomer reactivity ratios were determined by the Kelen–Tudos (KT) method and the nonlinear least‐squares error‐in‐variable method (EVM). The reactivity ratios obtained from KT and EVM were rG = 37.4 ± 12.0 and rV = 0.036 ± 0.019 and rG = 35.2 and rV = 0.03, respectively. Complete spectral assignments of 13C and 1H NMR spectra were done with the help of distortionless enhancement by polarization transfer and two‐dimensional 13C–1H heteronuclear single quantum coherence and total correlation spectroscopy. The methyl, methine, and methylene carbon resonance showed both stereochemical and compositional sensitivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4051–4060, 2001  相似文献   

8.
Glycolide (GL) and ?‐caprolactone (CL) were copolymerized in bulk at relatively high temperatures using stannous octoate as a catalyst. To investigate the relationship among microstructure, thermal properties, and crystallinity, three series of copolymers prepared at various reaction temperatures, times, and comonomer feed ratios were prepared and characterized by 1H and 13C NMR, DSC, and wide‐angle X‐ray diffraction (WAXD). The 600‐MHz 1H NMR spectra provided information about not only the copolymer compositions but also about the chain microstructure. The reactivity ratios (rG and rC) were calculated from the monomer sequences and were 6.84 and 0.13, respectively. In terms of overall feed compositions, the sequence lengths of the glycolyl units calculated from the reactivity ratios exceeded those measured from the polymeric products. Mechanistic considerations based on reactivity ratios, monomer consumption data, and average sequence lengths are discussed. The unusual phase diagram of GL/CL copolymers implies that the copolymer melting temperature does not depend on its composition alone but rather on the nature of the sequence distribution. The DSC and WAXD measurements show a close relationship between polymer crystallinity and the nature of the polymer sequence. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 544–554, 2002; DOI 10.1002/pola.10123  相似文献   

9.
Ethyl acrylate (E)/methyl methacrylate (M) copolymers of different compositions were prepared, and their compositions were determined with 1H NMR spectra. The complete spectral assignments, in terms of the compositional and configurational sequences of these copolymers, were made with the help of distortionless enhancement by polarization transfer and two‐dimensional heteronuclear single quantum coherence spectroscopy. The α‐(CH3)M, ? CH (E), ? CH2, and 〉C?O carbons of both M and E units were found to be sensitive to various compositional and configurational sequences. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 313–326, 2003  相似文献   

10.
Copolymers of 2‐methylene‐1,3‐dioxepane (MDO) and methyl acrylate (MA) containing ester units both in the backbone and as pendant groups were synthesized by free‐radical copolymerization. The influence of reaction conditions such as the polymerization time, temperature, initiator concentration, and comonomer feed ratio on the yield, molecular weight, and copolymer composition was investigated. The structure of the copolymers was confirmed by 1H NMR, 13C NMR, and IR spectroscopy. Differential scanning calorimetry indicated that the copolymers had a random structure. An NMR study showed that hydrogen transfer occurred during the copolymerization. The reactivity ratios of the comonomers were rMDO = 0.0235 and rMA = 26.535. The enzymatic degradation of the copolymers obtained was carried out in the presence of proteinase K or a crude enzyme extracted from earthworms. The experimental results showed that the higher ester molar percentage in the backbone caused a faster degradation rate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2898–2904, 2003  相似文献   

11.
Copolymerization of acrylonitrile and ethyl methacrylate using atom transfer radical polymerization (ATRP) at ambient temperature was carried out under optimized reaction conditions using 2‐bromopropionitrile as initiator and CuBr/2,2′‐bipyridine as the catalyst system. The copolymer composition, obtained from 1H NMR spectra, were used to determine the monomer reactivity ratios (rA = 0.68 and rE = 1.75) involved in ATRP. Two‐dimensional NMR (heteronuclear single quantum correlation and total correlated spectroscopy) experiments were employed to resolve the highly overlapping and complex 1H and 13C{1H} NMR spectra of copolymers. The complete spectral assignments of the quaternary carbons viz. carbonyl and nitrile carbons were done with the help of heteronuclear multiple bond correlation spectra. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2955–2971, 2006  相似文献   

12.
Copolymerization of ethylene with styrene, catalyzed by 1,4‐dithiabutanediyl‐linked bis(phenolato) titanium complex and methylaluminoxane, produced exclusively ethylene–styrene copolymers with high activity. Copolymerization parameters were calculated to be rE = 1.2 for ethylene and rS = 0.031 for styrene, with rE rS = 0.037 indicating preference for alternating copolymerization. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with styrene content up to 68%. The copolymer microstructure was fully elucidated by 13C NMR spectroscopy revealing, in the copolymers with styrene content higher than 50%, the presence of long styrene–styrene homosequences, occasionally interrupted by isolated ethylene units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1908–1913, 2006  相似文献   

13.
All relevant 13C NMR signals of a series of 19 homogeneous ethylene–propylene copolymers were used to fit the first‐order Markov reactivity ratios of the catalyst and the theoretical feeds. The copolymers cover a broad range of comonomer incorporations, from 17.0 to 56.5%, and show both primary (1,2) and secondary (2,1) insertions. As expected, two solutions are found, the normal solution showing a better fit and reliability > 99.5%. The reactivity ratios, r12 = 20.0, r13 = 162.0, r21 = 0.015, r23 = 1.3, and r31 = 0.060, provide direct information about the vanadium‐based catalyst, the kinetics, and the chain microstructure. The values also explain the comonomer content‐dependent inversion and even predict a 100% secondary insertion PP homopolymer. With these results, the direct peak method shows that the use of all relevant 13C NMR peaks improves the accuracy of first‐order Markov modeling. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 738–746, 2006  相似文献   

14.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

15.
Trans-4-methacryloyloxyazobenzene/Vinylidene Chloride (M/V) copolymers of different monomer concentrations were prepared by solution polymerization using benzoyl peroxide as an initiator. The copolymer composition was determined from the 13C{1H}-NMR spectrum. The quaternary carbon of M- and V-centered resonances were used for determining the sequences in terms of the distribution of M- and V-centered triads. The sequence distribution of M- and V-centered triads determined from 13C{1H}-NMR spectra of the copolymer is in good agreement with the triad concentration calculated from the statistical model. The comonomer reactivity ratios, determined by both the Kelen Tudos (KT) and the nonlinear error in variables (EVM) methods are rM = 3.59 ± 0.19, rV = 0.89 ± 0.07; rM = 3.76, and rV = 0.93, respectively. 13C Distortionless Enhancement by Polarization Transfer (DEPT) spectrum was used to differentiate between the resonance signals of M- and V-methylene and methyl carbon units. Assignments to the methylene resonance signals have been assigned up to the tetrad levels using 2D HSQC experiments. The geminal couplings in the methylene proton region is shown in the 2D DQF-COSY spectrum. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3179–3185, 1999  相似文献   

16.
The cationic homopolymerization and copolymerization of L,L ‐lactide and ε‐caprolactone in the presence of alcohol have been studied. The rate of homopolymerization of ε‐caprolactone is slightly higher than that of L,L ‐lactide. In the copolymerization, the reverse order of reactivities has been observed, and L,L ‐lactide is preferentially incorporated into the copolymer. Both the homopolymerization and copolymerization proceed by an activated monomer mechanism, and the molecular weights and dispersities are controlled {number‐average degree of polymerization = ([M]0 ? [M]t)/[I]0, where [M]0 is the initial monomer concentration, [M]t is the monomer concentration at time t, and [I]0 is the initial initiator concentration; weight‐average molecular weight/number‐average molecular weight ~1.1–1.3}. An analysis of 13C NMR spectra of the copolymers indicates that transesterification is slow in comparison with propagation, and the microstructure of the copolymers is governed by the relative reactivity of the comonomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7071–7081, 2006  相似文献   

17.
New functional monomer methacryloyl isocyanate containing 4‐chloro‐1‐phenol (CPHMAI) was prepared on reaction of methacryloyl isocyanate (MAI) with 4‐chloro‐1‐phenol (CPH) at low temperature and was characterized with IR, 1H, and 13C‐NMR spectra. Radical polymerization of CPHMAI was studied in terms of the rate of polymerization, solvent effect, copolymerization, and thermal properties. The rate of polymerization of CPHMAI has been found to be smaller than that of styrene under the same conditions. Polar solvents such as dimethylsulfoxide (DMSO) and N,N‐dimethyl formamide (DMF) were found to slow the polymerization. Copolymerization of CPHMAI (M1) with styrene (M2) in tetrahydrofuran (THF) was studied at 60°C. The monomer reactivity ratio was calculated to be r1 = 0.49 and r2 = 0.66 according to the method of Fineman—Ross. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 469–473, 2000  相似文献   

18.
The copolymerization of ethylene with triphenylamine (TPA)‐containing α‐olefin monomer 1 using a rac‐Et(Ind)2ZrCl2 ( EBIZr )/MAO catalytic system was investigated to prepare polyethylene with pendent TPA groups. Despite the presence of a large excess of TPA moieties, the polymerization reactions efficiently produce copolymers of high‐molecular‐weight with the comonomer incorporation up to 6.1 mol % upon varying the comonomer concentration in the feed. Inspection of the aliphatic region of the 13C‐NMR spectrum and the estimated copolymerization parameters (r 1 ≈ 0 for 1 and rE ≈ 43 for ethylene) reveal the presence of isolated comonomer units in the polymer chain. While UV–vis absorption measurements of the copolymers show an invariant absorption feature, PL spectra exhibit a slightly red‐shifted emission with increasing content of 1 in the polymer chain. All the copolymers show high thermal stability (Td5 > 436 °C), and the electrochemical stability toward oxidation is also observed. Particularly, the copolymer displays hole‐transporting ability for the stable green emission of Alq3 when incorporated into the hole‐transporting layer of an electroluminescence device. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5816–5825, 2008  相似文献   

19.
Catalytic activity of Me2SiCp*NtBuMX2/(CPh3)(B(C6F5)4) [MTi, XCH3 (1); MZr, X=iBu (2)] systems in the ethylene/styrene (E/S) feed was examined. Experimental data revealed high activity for the catalytic system (1) for copolymerization ethylene with styrene, whereas the system with enhanced catalytic activity for ethylene homopolymerization (2) was temporarily blocked in the styrene presence yielding, even at high styrene content, homopolyethylene as the final product. Properties of thus obtained polymers were analyzed. Catalytic system (1) occurred very sensitive to S/E ratio in the comonomers feed. The 10‐fold acceleration for ethylene consumption was shown in two experimental sets conducted at S/E = 1.3 ratio, 1 bar, and 7.5 bar ethylene pressure, respectively. The consequent enhancement in S/E ratio resulted in slowing down both ethylene consumption and catalyst deactivation rates. Atactic polystyrene was formed at high styrene content with the catalyst (1). Catalytic system (1) allowed design of products with the highest styrene content (20 mol %) at low ethylene pressure, moderate temperature, and high S/E ratio. The apparent activation energy estimated from the initial rates of ethylene consumption was 54.6 kJ/mol. Analysis of apparent reactivity factors (rE = 9 and rS = 0.04; rE × rS = 0.4) and 13C‐NMR copolymer spectra revealed an alternating tendency of the comonomers for active center incorporation. DSC measurements showed considerable decrease of melting points and crystallinity even for copolymers with low styrene content. The catalyst produced relatively high–molecular weight copolymers (140–150 kg/mol) even at 80°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1083–1093, 1999  相似文献   

20.
Two series of acrylic acid-styrene copolymers of various composition have been prepared in benzene and dimethylformamide in order to study their sequence distribution by using 13C NMR spectroscopy. The reactivity ratios in benzene were rA = 0.13, rA = 0.30 and in dimethylformamide rA = 0.05, rS = 1.60. Copolymers with the same overall composition but prepared in different media display marked differences in sequence distribution, the copolymers obtained in dimethylformamide always having longer sequences. For the series of copolymers prepared in dimethylformamide, the experimental percentages of acrylic acid-centered triads (SAS, SAA, AAA) disagree with the values calculated from the monomer reactivity ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号