首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Permanganic reagents, developed for revealing semicrystalline morphology in olefin polymers under the electron microscope, have been modified by changing the water content to give the best resolution of detail in different polyethylene specimens. An optimum reagent is chosen to characterize a special feature of polyethylene spherulites, namely the S‐profile of dominant lamellae seen as growing towards the observer. This reagent consists of 1% weight of potassium permanganate in a mixture of 10 volumes concentrated sulphuric acid, 4 volumes of 85% orthophosphoric acid, and 1 volume of water. This study is set in the historical context of banded spherulite studies. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2279–2286, 1999  相似文献   

2.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Oriented high‐density polyethylene (HDPE), prepared by melt extrusion drawing, has been employed to address the correlation between cavitation and lamellar fragmentation at large strain. This has been done by investigating the volume strain, elastic recovery properties, and microscopic morphology. The results indicate that the reversible volume strain becomes saturation at a true strain of about 0.3, which is essentially consistent with the critical one related to lamellar fragmentation (point C). Morphological observations on the deformed samples provide structural insights into above deformation behaviors. Enlarged voids are hard to recover due to dominant plastic deformation of crystals once lamellar fragmentation sets in and thus a transition of reversible volume strain with strain is presented. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1202–1206, 2008  相似文献   

4.
5.
In a preceding work we described a method whereby ultra high modulus filaments of polyethylene of essentially lamellar structure could be produced from the melt by a combination of capillary flow and pressure quenching [1]. Here the lamellae are nucleated by flow induced fibrous crystals formed during the extrusion but present in too small amounts to influence the properties themselves. Yet these microfibrils ensure the particular parallel and mutually interlocking arrangement of lamellae which is the source of the ultra high modulus.In the present work we set out to engineer this interlocking parallel lamellar morphology by utilizing preexisting fibrous crystals, as opposed to relying on their coincidental formation during the extrusion. By a judicious choice of the initial starting material and heat treatment conditions our objective was achieved, illustrating that lamellar self-composites with desirable properties can be achieved by planned design of the micro-morphology.As an additional feature these samples displayed ageing effects which have led to improved properties. Analogous phenomena, termed self stiffening have been observed previously in drawn fibre products [8]. The presently arising example has now allowed its morphological origin to be identified: this is the delayed crystallization by which the interlocking lamellae fill in the residual interstices, the stage at which the corresponding sample acquires its final modulus.  相似文献   

6.
A study of the anisotropic microhardness and Young's modulus of transcrystalline isotactic polypropylene grown from the surface of high modulus carbon fibers is described. Static microindentation experiments were performed with Knoop and Vickers tips. The Young's moduli of the transcrystalline region were estimated from Knoop microindentation data by using a method recently developed in our laboratory. Data for the different lamellar directions were generated using the Knoop tip, which is sensitive to material anisotropy. We found that the hardness and Young's modulus of the transcrystalline layer are higher by up to 30% when the longer diagonal of the probing Knoop tip is perpendicular to the transcrystalline growth direction, compared to when the diagonal is parallel to that direction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 523–530, 1999  相似文献   

7.
Summary The microfibrillar and lamellar morphologies in cold-drawn and cold-drawn/annealed high-density polyethylene sheets were observed by means of scanning electron microscopy. Differences in contrast on fracture surfaces for cold-drawn sheet are interpreted in terms of a preferential orientation of inter-microfibrillar tie molecules in the plane of the sheet brought about by the drawing mechanism. In annealed, cold-drawn sheet, stacks of lamellae were observed which showed twinned orientations of inclined lamellae. This roof-top structure is interpreted in terms of shear within the individual microfibrils during micronecking, and corresponds to the well-known 4-point small-angle X-ray pattern for this type of specimen. Light etching with fuming nitric acid was necessary in order to resolve the individual lamellar texture.With 9 figures  相似文献   

8.
Spherulites are common structures of semi-crystalline polymers. It has been known that semi-crystalline polymers can form spherulites when crystallized from solution or from melt. A dark Maltese cross of a spherulite could be easily observed under the polarized optical microscopy (POM). Moreover, some spherulites show an additional alternating dark and bright concentric ring structure that is attributed to the regular twisting of the radial crystallite ribbons as they grow from the spherulit…  相似文献   

9.
Rate parameters for dielectric relaxation and the thermal properties of long-chain molecular systems are shown to provide evidence for chain twisting at chain lengths shorter than previously suggested. Comparison of the temperatures of maximum absorption at 1 Hz for mechanical and dielectric relaxation suggests that the underlying motion is not the same for the two observed quanties. The evidence for relaxation in polyethylene is shown to be compatible with this suggestion.  相似文献   

10.
Metallocene catalyst based polyethylene‐co‐7‐octenyldimethyl phenyl silane (PE/Si? Ph ) and its post‐treated functional forms PE/Si? X ( X = Cl , F , OCH3 , OCH2CH3 ) were used as additives in PE/ATH composites. The impact strength of the composites was significantly increased after a small addition (0.5–3.0 wt %) of the functionalized form of the copolymer (PE/Si? X ). The thermal study of the composites gave us more information about the additive's behavior at the filler/matrix interphase and correlation to the mechanical properties was found. According to this thermal data, the original untreated form of PE/Si? Ph also seemed to interact weakly with the ATH‐filler particles, which was seen in an altered interphase at the filler/matrix boundary layer. The interaction was not strong enough to improve the impact strength of composites but an increase was observed in some other mechanical properties (tensile stress, yield strain). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5597–5608, 2005  相似文献   

11.
Summary: Transcrystallinity in UHMWPE fiber‐reinforced HDPE composites promotes a significant β transition that is untypical of high‐density polyethylene. Surface profiling by atomic force microscopy identifies two distinct morphologies in the composite without a boundary phase between them, which coincide with the transcrystalline layer and with the bulk spherulitic matrix. As a result, the claim that attributes this transition to loose chain folds at the lamella surface is favored.

Atomic force microscopy scan of the transcrystalline layer above the fiber with the impression of the fiber in the center.  相似文献   


12.
The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystallization. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs. Supported by the National Natural Science Foundation of China (Grant No. 50772031), the Chinese Program for New Century Excellent Talents in University (Grant No. NCET-05-0678), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, Hubei Provincial Department of Education (Grant No. Q200610005), and Hubei Provincial Science & Technology Department (Grant No. 2006ABA020)  相似文献   

13.
The Hoffman–Lauritzen theory of secondary, surface nucleation and growth was primarily relied upon for about 40 years after its introduction in about 1960 to rationalize the crystallization of flexible chain polymers into lamellar crystals. However, in about 1998, Strobl and coworkers introduced a different model for crystallization, based on the stage‐wise formation of lamellae. Two major components of this model were as follows: (1) the concept of the formation of a mesomorphic melt as a precursor to crystallization and (2) the control of the melting temperature range of lamellar crystals of homogeneous polyolefin copolymers by an inner degree of order or perfection rather than on the crystal thickness. The first concept is in disagreement with the HL theory and the second with the Gibbs‐Thomson theory, which associates melting temperature with lamella thickness. In the present study, differential scanning calorimetry and atomic force microscopy were successfully employed to monitor the in situ quiescent crystallization of polyethylene homopolymer and copolymer. In the present study, evidence was not found to support the concept of lamellae with equal thickness melting over a broad temperature range. Some evidence was found that might be interpreted to support the concept of a mesomorphic melt as a precursor to crystallization. At present, the model promoted by Strobl and coworkers appears to be at an uncertain stage at which strong proof or disproof are not available. However, this alternative model has injected a new vitality into the study of crystallization of flexible chain polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2369–2388, 2006  相似文献   

14.
Changes in the lamellar and crystalline structures were followed as a function of applied stress to understand the influence of the interactions between the crystalline and amorphous domains on the fiber properties. We observed a reversible transformation from a structure giving a four‐point small‐angle pattern to a structure giving a two‐point pattern; these structures corresponded to the lamellae with oblique and normal lamellar surfaces, respectively. The characteristics of these two structures such as the stack diameter, stack height, and tilt angle were different and were determined by the processing conditions and did not change when the fiber was elastically deformed. The structure giving a two‐point pattern was probably the load‐carrying lamellar entity in these fibers. The diameter of the lamellar stacks, tilt angle of the lamellae, and the strain in the lamellar spacing appeared to have the most influence on properties such as tenacity and dimensional stability. The long‐spacing strain, which is about the same as the fiber strain, determined the modulus at low elongation as well as ultimate elongation. These indicate that the lamellar stacks have at least as much influence as the interfibrillar chains on fiber properties. Structural features that determine the performance in semicrystalline polymers were investigated by analyzing four generations of polyethylene terephthalate fibers. Some of the fiber properties correlate with changes in the crystalline domains such as the crystalline orientation, size, and unit cell dimensions. Fibers in which the crystalline strain was large because of their strong linkages to the amorphous chains, and better load transfer, had the highest modulus and lowest ultimate elongation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1538–1553, 2003  相似文献   

15.
In this study,right-handed dicinnamate isosorbide was synthesized via the esterification reaction between optically active isosorbide and cinnamate.The chiral dopant was characterized by FT-IR,~1H NMR,elemental analysis,SEM,UV absorption spectrum.After dissolving in a nematic liquid crystal mixture,the chiral dopant exhibited a temperature-dependent solubility in the chiral nematic liquid crystal mixture.Meanwhile,a relatively high value of helical twisting power of the polymerizable chiral dopant was de...  相似文献   

16.
A racemic amphiphilic monomer, n‐dodecyl glyceryl itaconate (DGI), forms bilayer membranes in water in the presence of small amount of ionic cosurfactant and shows iridescent color. A chiral DGI, S‐DGI, also shows an iridescent property, but with a rather red shift in the color, which can be ascribed to the increased packing density of the monomer in the bilayer membranes. Chrial DGI has a more compact packing density than racemic one owing to closer distance between the monomer molecules; the conversion rate, however, is slower than that of racemic one when H2O2 is used as an initiator. When the initiator is changed to an amphiphilic one, 4‐(2‐hydroxyethoxy) phenyl‐(2‐hydroxy‐2‐propyl) ketone (Irgacure 2959), the chiral DGI shows even a little faster conversion rate than that of racemic one. The NMR chemical shift results of protons in benzene ring show that the molecules of Irgacure 2959 insert into the bilayer membranes. The molecular weights of the corresponding polymers prove that the initiation by H2O2 is restricted compared to that by Irgacure 2959. It is concluded that the decelerated polymerization behavior of chiral DGI initiated by H2O2 is a result of limited diffusion of the initiator into the lamellar bilayer structures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4891–4900, 2007  相似文献   

17.
Summary A combined wide (WA) and small angle X-ray diffraction (SAXS) study of melt compressed low density PE samples into the form of very thin films is reported. The WAXD patterns show an uniaxialb axis orientation normal to the film surface which can be interpreted in terms of a row structure in the plane of the film. The analysis of SAXS data indicates, in addition, a preferential orientation of bundles of stacked lamellae parallel to the film surface separated by longitudinal microvoids.With 3 figures  相似文献   

18.
Two different samples of high‐density polyethylene (HDPE) were studied. One (isotropic) was extracted from the material core, whereas the other (anisotropic) involved two sides that were in contact with the injection mold. Using radiofrequency field gradients, it was observed by NMR microscopy that these two sides favor toluene penetration into the material. Solvent diffusion in both samples could be successfully modeled, as demonstrated by the comparison between experimental NMR images and simulated images. Weight measurements appear to be consistent with the quantitative conclusions derived from NMR microscopy data. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2781–2792, 2001  相似文献   

19.
Inclusion of conductive particles is a convenient way for the enhancement of electrical and thermal conductivities of polymers. However, improvement of the mechanical properties of such composites has remained a challenge. In this work, maleated polyethylene is proposed as a novel matrix for the production of conductive metal–thermoplastic composites with enhanced mechanical properties. The effects of two conductive particles (iron and aluminum) on the morphological, mechanical, electrical, and thermal properties of maleated polyethylene were investigated. Morphological observations revealed that the matrix had excellent adhesion with both metal particles. Increase in particle concentration was shown to improve the tensile strength and modulus of the matrix significantly with iron being slightly more effective. Through‐plane electrical conductivity of maleated polyethylene was also substantially improved after adding iron particles, while percolation was observed at particle contents of around 20–30% vol. In the case of aluminum, no percolation was observed for particle contents of up to 50% vol., which was linked to the orientation of the particles in the in‐plane direction due to the squeezing flow. Inclusion of particles led to substantial increase (over 700%) in the thermal conductivities of both composites. The addition of high concentrations of metal particles to matrix led to the creation of two groups of materials: (i) composites with high electrical and thermal conductivities and (ii) composites with low electrical and high thermal conductivities. Such characteristics of the composites are expected to provide a unique opportunity for applications where a thermally conductive/electrically insulating material is desired. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This work presents a relationship between the thermal properties in different polyethylene samples analyzed by differential scanning calorimetry (DSC). The morphology and structural changes were studied by transmission electron microscopy (TEM). A preparative method involving surface etching was used to obtain surface replicas. The main morphological features of the samples, characterized by lamellar structure, obtained in this work by TEM give values of mean lamellar thickness from 900 to 500 Ĺ in the highest branch content and molecular mass. Enthalpies of melting allowed to calculate crystallinity; given values in the range from 47 to 68%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号