首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ring-opening polymerizations of cyclobutane adducts of tetracyanoethylene (TCNE) and vinyl ethers (VE) or p-methoxystyrene with tertiary amines are described. The polymerization of the cyclobutane adduct 1a of TCNE and ethyl vinyl ether (EVE) was carried out with 10 mol % of triethylamine in acetonitrile at ambient temperature to afford the alternating copolymer of TCNE and EVE with high molecular weight in good yield under various conditions. Under the optimum condition, the cyclobutane adducts of TCNE and a variety of VEs such as n-butyl vinyl ether, isobutyl vinyl ether, 2,3-dihydrofuran, and 3,4-dihydro-2H-pyran were polymerized to yield similar polymers. Although the cyclobutane adduct 4 of TCNE and p-methoxystyrene did not polymerize under these conditions, the treatment of 4 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in acetonitrile at 60°C gave the polymer. On the basis of the fact that the polymer molecular weight increased rapidly at the initial stage and slowly even after the consumption of all of monomers, we propose that the tertiary amine initiates the chain anionic polymerization of the cyclobutane adduct to afford an ammonium macrozwitterion 3 , which is subjected to the intermolecular nucleophilic substitution with each other in a step polymerization manner. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The anionic ring-opening copolymerization of commercially available bio-based cardanol glycidyl ether (CGE) was investigated without any prior purification. As a first step, anionic-ring-opening homopolymerization was attempted through active chain-end and monomer-activated mechanisms. Both strategies were unsuccessful. Conversely, in a second step, the anionic alternating ring-opening copolymerization (AAROP) of CGE with the renewable N-acetyl homocysteine thiolactone (NHTL) was successfully carried out in the presence of a strong base. Anisole, a solvent classified as sustainable and rarely used in anionic ring-opening polymerization, proved to be a suitable for the AAROP. This polymerization is an unusual example of synthesis of linear polyesters with cardanol-based monomers. The copolymers were carefully characterized by 1H, 13C, COSY, HSQC, 1H-15N NMR and MALDI-ToF, demonstrating an alternating structure. Then, CGE was copolymerized with NHTL and another additional epoxide. The cardanol-derived monomers enable the preparation of functionalizable poly(ester-alt-thioether) bearing multiple allyl and alkene groups. The AAROP method in anisole offers new opportunity for green anionic polymerization through the use of sustainable chemicals, witnessed by the valorization of cardanol-derived compounds and expands the scope of synthesized renewable polyesters.  相似文献   

3.
4.
Aliev  Z. G.  Shchepin  V. V.  Lewis  S. B.  Shchepin  R. V.  Atovmyan  L. O. 《Russian Chemical Bulletin》2000,49(12):2072-2073
The reaction of alfa,alfa-dibromobutyrophenone with dimethyl benzylidenemalonate in the presence of zinc gives dimethyl 2-benzoyl-2-ethyl-3-phenylcyclopropane-1,1-dicarboxylate as a single geometrical isomer. Its structure was determined by X-ray diffraction analysis.  相似文献   

5.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   

6.
The oligomerization mechanism of N-pyrrolyl ethyl vinyl ether is studied for two different routes of polymerization by using quantum mechanical calculations. Model compounds for oligomerization between monomers and monomer-pyrrole systems are optimized fully via semiempirical methods. By comparing the enthalpy changes of these two processes, it is found that generally the binding of pyrrole groups on the carbon backbone is favoured; however, the self-polymerization is also thermodynamically competitive. These results support the previous experimental evidence.  相似文献   

7.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

8.
Facile ring-opening polymerization of cyclic aryl ether oligomers containing the 1,2-dibenzoylbenzene moiety to form high molecular weight linear polymers in the presence of a nucleophilic initiator is described. The polymerization can be initiated in the melt in the presence of a nucleophilic initiator such as potassium carbonate, cesium fluoride, and alkali phenoxides. Various alkali phenoxides were investigated as potential nucleophilic initiators. The polymerization reaction rate in the melt increases in the order of K+ > Na+ > Cs+, and in the order of OPhPhO > PhO > PhOPhO > PhPhO. However, the polymerization in an aprotic dipolar solvent is faster in the presence of cesium phenoxide than in the presence of potassium phenoxide. Polymerization of the cyclic oligomers in solution demonstrates that the ring-opening polymerization proceeds via a chain-growth mechanism and involves a transetherification reaction between linear and cyclic aryl ether oligomers. The ring-chain equilibrium is much more favorable towards linear polymers. Since little or no ring strain exists in the cyclic system, the transetherification reactions are indiscriminate with regards to cyclic or linear chains and the interchain equilibration is also a facile process during polymerization. This intermolecular transetherification has been demonstrated by using low molecular weight aryl ethers to control the molecular weight of the polymer formed via ring-opening polymerization. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
10.
The MeCH(O-i-Bu)Cl/TiCl4/MeCONMe2 initiating system was found to induce the rapid living carbocationic polymerization (LCPzn) of isobutyl vinyl ether (IBuVE) at ?100°C. Degradation by dealcoholation which usually accompanies the polymerization of alkyl vinyl ethers by strong Lewis acids is “frozen out” at this low temperature and poly(isobutyl vinyl ether)s (PIBuVEs) with theoretical molecular weights up to ca. 40,000 g/mol (calculated from the initiator/monomer input) and narrow molecular weight distributions (M?w/M?n ≤ 1.2) are readily obtained. According to 13C-NMR spectroscopy, PIBuVEs prepared by living polymerization at ?100°C are not stereoregular. The MeCH(O-i-Bu)Cl/TiCl4 combination induces the rapid LCPzn of IBuVE even in the absence of N,N-dimethylacetamide (DMA). The addition of the common ion salt, n-Bu4NCl to the latter system retards the polymerization and meaningful kinetic information can be obtained. The kinetic findings have been explained in terms of TiCl4. IBuVE and TiCl4 · IBuVE and TiCl4 · PIBuVE complexes. The HCl (formal initiator)/TiCl4/DMA combination is the first initiating system that can be regarded to induce the LCPzn of both isobutylene (IB) and IBuVE. Polyisobutylene (PIB)–PIBuVE diblocks were prepared by sequential monomer addition in “one pot” by the 2-chloro-2,4,4-trimethylpentane (TMP-Cl)/TiCl4/DMA initiating system. Crossover efficiencies are, however, below 35% because the PIB + IBuVE → PIB-b-PIBuVE crossover is slow. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
A kinetic study of the independent and simultaneous photoinitiated cationic polymerization of a number of epoxide and vinyl (enol) ether monomer pairs was conducted. The results show that, although no appreciable copolymerization takes place, these monomers undergo complex interactions with one another. These interactions are highly dependent on the epoxide monomer employed. In all cases, the rate of epoxide ring-opening polymerization is accelerated, whereas that of the vinyl ether is depressed. When highly reactive cycloaliphatic epoxides are subjected to photoinitiated cationic polymerization in the presence of vinyl ethers, the two polymerizations proceed in a sequential fashion, with the vinyl ether polymerization taking place after the epoxide polymerization is essentially complete. A mechanism involving an equilibration between alkoxy-carbenium and oxonium ions has been proposed to explain the results. In addition, the free-radical-induced decomposition of the diaryliodonium salt photoinitiator also takes place, leading to a decrease in the induction period. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4007–4018, 1999  相似文献   

13.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

14.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

15.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

16.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The cationic ring-opening polymerization of six-membered cyclic pseudoureas, 2-(1-pyrrolidinyl)- ( 2a ) and 2-morpholino-5,6-dihydro-4H-1,3-oxazine ( 2b ), was examined, which proceeded in two different ways, depending on the nature of initiator. The polymerization of 2 with methyl p-toluenesulfonate or trifluoromethanesulfonate (MeOTf) produced poly[(N-carbamoylimino)trimethylene], while that with benzyl chloride or bromide or methyl iodide gave a polymer consisting of 1,3-diazin-2-one-1,3-diylalkylene unit (the main component) and (N-carbamoylimino)trimethylene unit. The cationic ring-opening polymerization of seven-membered cyclic pseudourea, 2-(1-pyrrolidinyl)-4,5,6,7-tetrahydro-4H-1,3-oxazepine ( 3 ) was also examined. The polymerization of 3 with MeOTf as initiator gave poly{[N-(1-pyrrolidinycarbonyl)imino]tetra-methylene}. With benzyl chloride, on the other hand, no polymerization of 3 proceeded but, instead, the quantitative isomerization of 3 to 1,1′-carbonyldipyrrolidine took place. The polymerization mechanism of 2 and 3 as well as the isomerization mechanism of 3 were discussed with comparing them to the polymerization mechanism of five-membered pseudoureas. © 1977 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 933–945, 1997  相似文献   

18.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

19.
In the living cationic polymerization of isobutyl vinyl ether (IBVE) by the CH3CH (OiBu) OCOCH3 ( 1 )/EtAlCl2 initiating system in the presence of the added base in hexane at +40°C, the stability of the initiating system 1 /EtAlCl2, which form initiating species CH3CH (OiBu) derived from 1 , was investigated. In the presence of the Lewis base such as ethyl acetate or 1,4-dioxane, the active species was stable for 300 min even at +40°C in the absence of IBVE, and the living polymers were quantitatively obtained by adding IBVE. However, the active species was partly consumed by side reactions during the standing time for 60 min in the presence of a less basic additive such as ethyl benzoate, and about 50% of the active species was deactivated in the presence of methyl chloroacetate. Consequently, in the case of a less basic additive such as methyl chloroacetate (which was effective for the fast living polymerization), it can be seen that the careful selection of polymerization conditions was required. The living polymerization rate was dependent on the second order of EtAlCl2 concentration. EtAlCl2 induced the cleavage of 1 into CH3CH (OiBu) and EtAl?Cl2(OCOCH3), and the reactivity of CH3CH (OiBu) and propagating carbocation may be controlled by EtAl?Cl2(OCOCH3) with the aid of other EtAlCl2. Et1.5AlCl1.5 exists as a bimetallic complex of EtAlCl2 and Et2AlCl, and it is expected that the polymers having a bimodal molecular weight distribution will be obtained due to two kinds of counteranions coming from EtAlCl2 and Et2AlCl. However, in the cationic polymerization of IBVE by 1 /Et1.5AlCl1.5 in the presence of ethyl acetate, the living polymer exhibiting a unimodal and very narrow molecular weight distribution was obtained. Thereby, it was suggested that the counteranions, EtAl?Cl2(OCOCH3) and Et2Al?Cl(OCOCH3), exchange rapidly with each other. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The suspension cationic polymerization of isobutyl vinyl ether (IBVE) in aqueous medium could be achieved by using H3PW12O40, AlPW12O40, FePW12O40, K3PW12O40, or Na3PW12O40 as efficient water‐tolerant coinitiators in the presence of HCl. The addition reaction of IBVE with H2O occurred to form IBVE–H2O adduct and then subsequent decomposition immediately took place or turned to acetaldehyde diisobutyl acetal (A) in the presence of AlPW12O40, and ( A ) decomposed rapidly to form 2‐isobutanol ( B ) and acetaldehyde ( C ). Cationic polymerization of IBVE in aqueous medium was promoted greatly with increasing HCl concentration and proceeded extremely rapidly to get high polymer yield even at low concentration of AlPW12O40 of 0.3 mM. A sufficient amount of HCl was needed to decrease the hydrolysis of initiator IBVE–HCl and to accelerate the polymerization in aqueous medium simultaneously. The yield and molecular weight of poly(IBVE) increased with increasing concentrations of HCl and AlPW12O40 or with decreasing temperature. The isotactic‐rich poly(IBVE)s with m diad of around 60%, having Mn of 1200–4500 g mol?1 and monomodal molecular weight distribution could be obtained via cationic polymerization of IBVE in aqueous medium. This is the first example of cationic polymerization of IBVE in aqueous medium coinitiated by heteropolyacid and its salts. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号