首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behavior of two hydrogels, poly(sodium acrylate) and polyacrylamide gels, synthesized in the presence of the same crosslinking agent molecule, N,N′-methylene bis-acrylamide, has been investigated. The variation of the norm of the complex shear modulus |G*| vs. the monomer concentration (sodium acrylate or acrylamide) exhibited a different power law, depending on the nature of the monomer molecule. This discrepancy was ascribed to the influence of the properties of the monomer molecules on the crosslinked structure of the gelified networks. The analysis of the experimental results have allowed the suggestion that the elasticity exponent value was dependent on the length and on the conformation of the polymer chains connecting the junctions points of the network. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2535–2541, 1997  相似文献   

2.
Syntheses and radical polymerizations of several (meth)acrylamides having L -amino acid moieties were examined. The monomers were prepared by the reactions of L -amino acid ester hydrochlorides with (meth)acryloyl chloride in the presence of triethylamine in satisfactory yields. Radical polymerizations of the monomers were carried out in the presence of AIBN (1 mol %) in bulk and in several solvents to afford the corresponding polymers in satisfactory yield. The glass transition temperatures and specific rotations of the polymers depended on the substituents of the L -amino acid moieties. Nearly the same specific rotations were observed for the monomers and the model compounds of the polymer units, N-pivaloyl amino acid methyl esters. On the contrary, the specific rotations of the polymers shifted to the negative direction in ca. 30°. The interaction between the polymer side chains might affect the changes in the specific rotations from monomers to polymers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2619–2629, 1997  相似文献   

3.
N-vinyl-n-butyramide (NVBA), N-vinylisovaleramide (NVIVA), and N-vinyl-n-valeramide (NVVA), which are N-vinylalkylamides with different alkyl groups were synthesized and their solution behavior in a polymeric form was examined. Copolymers of N-vinylisobutyramide (NVIBA) with N-vinylacetamide (NVA), NVIBA with NVVA, and NVVA with NVA were prepared by the solution polymerization to control the LCSTs. The resultant polyNVBA showed a lower critical solution temperature (LCST) sharply at 32°C, but polyN-vinylisovaleramide (polyNVIVA) and polyN-vinyl-n-valeramide(polyNVVA) that have n-butyl and isobutyl groups, respectively, on their side chains were insoluble even in cold water. The water solubility of the resulting polymers was found to vary, depending on the molecular shapes as well as the side chain length of the alkyl groups in question. The copolymers consisting of NVVA, NVIBA, and NVA in water showed LCSTs sharply between 10 and 90°C, depending on changes in their comonomer content. It was found that the changes in LCST that are caused by the incorporation of comonomers are due to changes in the overall hydrophilicity of the polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3087–3094, 1997  相似文献   

4.
Polyester having amino sulfonic acid moieties (TBES) was prepared by a liquid/solid biphase polycondensation of terephthaloyl chloride (TPC) and N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) in trimethyl phosphate (TMP) using triethylamine (TEA) as an acid acceptor. Blends of TBES with PVA and their metal complexes with Ni2+ and Co2+ ions were prepared. A strong interaction was observed between TBES and PVA. An electric conductivity of 10−6 S cm−1 was attained for the blend films containing about 5 wt % water. A coordination structure with two chelate rings is proposed for the metal complex with Ni2+ and Co2+ ions when the molar ratio of amino sulfonic acid groups in TBES to metal ions is larger than 2. Polymer blends complexed with Ni2+ or Co2+ ions result in semi-interpenetrating polymer networks from chelate formation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3561–3569, 1997  相似文献   

5.
The relationship between the structure and reactivity of aliphatic-aromatic polyamides in the presence of CuI in an inert atmosphere was probed by reacting a family of benzamides with varying degrees of substitution on the amide nitrogen. Experiments with benzamide, N-methylbenzamide, N,N-dimethylbenzamide, N-hexylbenzamide, and N,N-dihexylbenzamide allowed comparison of primary, secondary, and tertiary benzamides and identification of the degradation pathways influenced by CuI. The presence of copper iodide enhanced the reactivity of all of the benzamides. Loadings as low as 0.5% led to higher conversion and increased recoverable product yields. Reaction path selectivities were also affected by the addition of CuI. The selectivity to benzene increased for all reactants, and the pathway leading to N-alkylation increased for the reaction of NHB. In all, these results revealed three major reaction pathways influenced by CuI: (1) N C bond cleavage; (2) N H bond cleavage; and (3) removal of the amide functional group from the aromatic ring. Kinetic results and visible color changes suggested a direct interaction of CuI with the reactant benzamide. Three electron-rich sites on the reactant benzamide, namely, the lone pairs on the carbonyl oxygen, the lone pair on the amide nitrogen and the aromatic ring, are likely sites of interaction of Cu+. Models invoking the subsequent reaction of complexes formed from Cu+ ion interaction at each of these sites account for the observed products well. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3305–3322, 1997  相似文献   

6.
The synthesis of perylene-3,4,9,10-tetracarboxylic acid-bis(N,N′-dodecyl-polyimide) (poly PTDI) and polyamic acid has been achieved from perylene dianhydride and dodecylamine. It was found that this new polyimide has very high thermal photostability. Poly PTDI decomposes at 475°C and shows weak fluorescence compared with the monomer PTDI possibly due to aggregration in the polymer. Its solubility in some of the common organic solvents, acetonitrile, dimethyl formamide, etc., makes spectroscopic and photochemical studies and applications possible in the liquid phase. The emission characteristics are similar to mono PTDI. Poly PTDI, a luminescent electron acceptor polymer, is a new reliable probe for a photosensitizer at energy transfer and election transfer photochemical reactions. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2137–2142, 1997  相似文献   

7.
Vinylbenzyl S-thioacetate ( 1 ) was prepared from thioacetic acid and chloromethylstyrene. Although bulk polymerization of 1 afforded a crosslinked polymer, solution polymerization in chlorobenzene afforded a corresponding soluble polymer. The S-thioacetate group did not react during the radical polymerization of 1 . Bulk copolymerization of 1 with styrene afforded a soluble copolymer when the feed ratio of 1 was lower than 30 mol %. Soap-free emulsion copolymerization of 1 , St, divinylbenzene, and 2-hydroxyethyl methacrylate (66 : 28 : 1 : 5) was carried out in water using 2,2′-azobis (N,N′-dimethyleneisobutyramidine) dichloride as an initiator to afford uniform spherical microgel 2 , whose average diameter was 135 nm. Aminolysis of 2 with an excess amount of butylamine in the presence of sodium tetrahydridoborate followed by treatment with hydrochloric acid resulted in complete removal of the acetyl group to give a slightly distorted spherical microgel (MG-SH) bearing mercapto group. The average diameter of MG-SH was 165 nm. Trans-esterification of p-nitrophenyl acetate ( 3 ) in the presence of triethylamine was efficiently accelerated by the addition of MG-SH. The radical polymerization of methyl methacrylate (MMA) in the presence of suspended MG-SH in chlorobenzene afforded the MMA-grafted microgel. Although MG-SH is a crosslinked gel, it acts as a soluble polymer bearing mercapto group. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1443–1451, 1997  相似文献   

8.
Pyrolysis of (N-α-isopropoxyethyl)isobutyramide, which was obtained by the reaction of isobutyramide, 2-propanol, and acetaldehyde in the presence of conc. sulfuric acid, produced N-vinylisobutyramide (NVIBA). The free radical polymerization of NVIBA was carried out in various solvents in the presence of a radical initiator. It was found that the polymerizability of NVIBA is similar to that of N-vinylacetamide. The resulting polyNVIBA showed a lower critical solution temperature (LCST) sharply at 39°C. Thermosensitive properties of polyNVIBA were investigated in comparison with poly(N-isopropylacrylamide). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1763–1768, 1997  相似文献   

9.
The Menschutkin reaction of three poly(tertiary aminostyrene)s: poly(N,N-dimethyl-4-vinylphenylamine) (PPA), poly(N,N-dimethyl-4-vinylbenzylamine) (PBA), and poly(N,N-dimethyl-4-vinylphenethylamine) (PPTA) was investigated. These three polymers having narrow molecular weight distributions were prepared via anionic living polymerization. PPA reacted homogeneously with n-butyl bromide in N,N-dimethylformamide (DMF). PBA and PPTA also reacted homogeneously with n-butyl bromide in a mixture of DMF/methanol (75/25 v/v %). GPC measurement of the quaternized polymers was carried out using a mixture of water/acetonitrile (80/20 v/v %) containing 0.5M acetic acid and 0.3M sodium sulfate (pH = 2.9) as an eluant in order to suppress adsorption of the quaternized water soluble polymers on GPC gel. Results of GPC measurement indicate that the polymer chains of the three poly(tertiary aminostyrene)s are neither severed nor crosslinked in the process of quaternization. Temperature dependence and reaction time dependence on the degree of quaternization (DQ) were studied for PPT, PBA, and PPTA. By altering reaction time and temperature, the DQ values of the three poly(tertiary aminostyrene)s could be controlled in the range from 0% to nearly 100%. Quaternization reactivity of the amino groups in the three polymers was found to decrease in the order, PPTA, PBA, and PPA. The differences in reactivity are thought to be attributable to the electron density on the nitrogen atom of the N,N-dimethylamino group, and steric hindrance in the vicinity of the nitrogen atom. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1219–1226, 1997  相似文献   

10.
A series of microspheres composed of methyl methacrylate (MMA) and N-(2-hydroxypropyl)methacrylamide (HPMA), and/or 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), i.e., binary copolymer microspheres [poly(HPMA-co-MMA)KPS and poly(HPMA-co-MMA)ABIP] and ternary ones [poly(HPMA/MPC-co-MMA)KPS and poly(HPMA/MPC-co-MMA)ABIP], were prepared by emulsifier-free emulsion copolymerization using potassium peroxodisulfate (KPS) or 2,2′-azobis[2-(imidazolin-2-yl)propane] dihydrochloride (ABIP) as initiators. The decrease in ζ-potential of the polymer microspheres is caused by the addition of the HPMA and/or MPC moieties. Equilibrium water content of poly(HPMA-co-MMA)ABIP showed a remarkable swelling change with a change in response to temperature: the hydrated conformation at 28°C and the dehydrated one at above 40°C. The adsorption of protein on the polymer microspheres also changed in response to change in temperature. The ternary polymer microspheres effectively suppressed the adsorption both of Alb and Glo, less than binary ones. A series of polymer microspheres are expected to apply as a novel drug carrier with both thermosensitive and nonthrombogenic functions. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3349–3357, 1997  相似文献   

11.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

12.
The anionic polymerization of N‐acryloyl‐N′‐(4‐methylbenzoyl)urea (1) was carried out at 80°C for 24 h in DMF, DMSO, acetonitrile, or toluene by t‐BuOK or DBU (3 mol %) as an initiator to obtain polymer 3 in a good yield. The structure of 3 was dependent upon the initiator used, in which t‐BuOK selectively conducted the hydrogen‐transfer polymerization, while DBU partially induced the vinyl polymerization (16–20%). Likewise, N‐acryloyl‐N‐methyl‐N′‐(4‐methylbenzoyl)urea (2, i.e., an N‐methylated derivative of 1) was subjected to the hydrogen‐transfer polymerization. Although the yield of the polymer was lower in comparison with 1, the structure of the obtained polymer 4 was similarly governed by the initiator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 465–472, 1999  相似文献   

13.
In single‐molecule force spectroscopy (SMFS), many studies have focused on the elasticity and conformation of polymer chains, but little attention has been devoted to the dynamic properties of single polymer chains. In this study, we measured the energy dissipation and elastic properties of single polystyrene (PS) chains in toluene, methanol, and N,N‐dimethylformamide using a homemade piezo‐control and data acquisition system externally coupled to a commercial atomic force microscope (AFM), which provided more accurate information regarding the dynamic properties of the PS chains. We quantitatively measured the chain length‐dependent changes in the stiffness and viscosity of a single chain using a phenomenological model consistent with the theory of viscoelasticity for polymer chains in dilute solution. The effective viscosity of a polymer chain can be determined using the Kirkwood model, which is independent of the intrinsic viscosity of the solvent and dependent on the interaction between the polymer and solvent. The results indicated that the viscosity of a single PS chain is dominated by the interaction between the polymer and solvent. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1736–1743  相似文献   

14.
Poly‐(2‐ethynylpyridinum bromide) (PEPBP) having propargyl side chains was prepared by the direct polymerization of 2‐ethynylpyridine and propargyl bromide under mild reaction conditions without any initiator and catalysts. The polymerization proceeded well to give PEPBP with propargyl side chains in relatively high yields. Various spectral data for the polymer structure indicated that the conjugated polymer system having N‐propargylpyridinum substituent was formed. This ionic polymer was completely soluble in water, methanol, dimethylformamide, dimethyl sulfoxide, and N,N‐dimethylacetamide and well processable into thin homogeneous film. The photoluminescence intensity (λmax = 760 nm) of this polymer increased as the temperature was increased. At 1 KHz and room temperature, this polymer has k′ = 2.9 and σ = 7.3 × 10?10 (S/cm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3151–3158, 2001  相似文献   

15.
Various alkylating and acylating agents, with different electrophilicity, were allowed to react with polyaniline “emeraldine base” (Pan-EB) or its anion. Replacing the N-hydrogens of polyaniline by various acyl or benzyl groups strongly affected the solubility and the electrical conductivity of the polymer. Neutral Pan-EB was reacted with benzoyl chloride, p-t-butylbenzoyl chloride or pivaloyl chloride in N,N′-dimethylpropylene urea (DMPU) solutions. While the benzoyl and pivaloyl derivatives showed very poor solubility in common organic solvents, the p-t-butylbenzoyl derivative was readily soluble in THF, chloroform, DMSO, etc. As expected, these acyl derivatives showed diminished electrical conductivity relative to that of the parent Pan-EB. Benzyl chlorides did not react with neutral Pan-EB. Attempts to prepare solutions of the nitrogen anion of Pan-EB by reaction with sodium hydride in DMSO or DMPU led invariably to crosslinked insoluble material. This was ascribed to Michael addition of the formed nitrogen anions to the quinonimine moieties. However forming the nitrogen anion in presence of p-t-butylbenzyl chloride trapped it to form N-benzylated Pan-EB. This was a soluble high molecular weight, electrically conductive (4.3 × 10−1 S cm−1 as the hydrochloride) N-alkyl Pan-EB. Reacting Pan-EB with excess of both sodium hydride and benzyl chlorides led to film-forming per-benzylated Pan-leucoemeraldine reduced form. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1673–1679, 1997  相似文献   

16.
Regiocontrolled polymer (2) having 2-naphthol unit was prepared by oxidative coupling polymerization of bis(2-naphthol) (1). Polymerizations were conducted in dichloromethane in the presence of [di-μ-hydroxo-bis(N,N,N′,N′-tetramethylethylenediamine)copper(II)] chloride [CuCl(OH)TMEDA] under air at room temperature, producing polymers with number-average molecular weights up to 12,000. The structure of polymer 2 was characterized by 270 MHz 1H–NMR and 68.5 MHz 13C–NMR spectroscopies and was estimated to consist almost completely of 1,1′-linkage. The polymer was readily soluble in polar aprotic solvents and tetrahydrofuran at room temperature. Thermogravimetric analysis of polymer 2 showed 10% weight loss at 450°C in nitrogen. The model reactions were studied to clarify the applicability of CuCl(OH)TMEDA for coupling of naphthol derivatives. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3702–3709, 1999  相似文献   

17.
Copolymers of N,N-dimethylaminoethyl methacrylate (DMAEMA) and acrylamide (AAm) were prepared to demonstrate a temperature-induced phase transition. Poly DMAEMA has a lower critical solution temperature (LCST) around 50°C in water. With copolymerization of DMAEMA with AAm, the LCST shifts to the lower temperature was observed, probably due to the formation of hydrogen bonds between amide and N,N-dimethylamino groups. FT-IR studies clearly show the formation of hydrogen bonds which protect N,N-dimethylamino groups from exposure to water and result in a hydrophobic contribution to the LCST. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 595–598, 1997  相似文献   

18.
Poly(arylene ether)s ( 3 ) containing pendant benzoyl groups were prepared by the aromatic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone (2) with hydroquinone ( 1a ) and methylhydroquinone ( 1b ) in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.8 dL/g. The polymer ( 3b ) derived from methylhydroquinone was quite soluble in common organic solvents and could be processed into uniform films from solutions. On the other hand, the polymer ( 3a ) derived from hydroquinone was only soluble in pentafluorophenol and methanesulfonic acid and had a high crystallinity. These polymers showed 10% weight losses at around 420 and 490°C in nitrogen. Polymer 3b also showed good tensile strength and tensile moduli. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 605–611, 1997  相似文献   

19.
Theoretical considerations based on chain connectivity and conformational variability of polymers have led to an uncomplicated relation for the dependence of the Flory–Huggins interaction parameter (χ) on the volume fraction of the polymer (?) and on its number of segments (N). The validity of this expression was tested extensively with vapor‐pressure measurements and inverse gas chromatography (complemented by osmotic and light scattering data from the literature) for solutions of poly(dimethylsiloxane) in thermodynamically vastly different solvents such as n‐octane (n‐C8), toluene (TL), and methylethylketone (MEK) over the entire range of composition for at least six different molecular masses of the polymer. The new approach is capable of modeling the measured χ (?, N), regardless of the thermodynamic quality of the solvent, in contrast to traditional expressions, which are often restricted to good solvents but fail for bad mixtures and vice versa. At constant polymer concentration, the χ values were lowest for n‐C8 (best solvent) and highest for MEK (Θ solvent); the data for TL fell between them. The influences of N depended strongly on the thermodynamic quality of the solvent and were not restricted to dilute solutions. For good solvents, χ increased with rising N. The effect was most pronounced for n‐C8, where the different curves for χ (?) fanned out considerably. The influences of N were less distinct for TL, and for MEK they vanished at the (endothermal) θ temperature. For worse than θ conditions, the χ values of the long chains were less than that of the short ones. This change in the sign of N agreed with this concept of conformational relaxation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1601–1609, 2004  相似文献   

20.
New reactive polymers with pendant halomethyl groups were successfully synthesized by polyaddition reactions of bis(epoxide)s with bis(chloroacetoxy)ester such as 1,4-bis [(chloroacetoxy)methyl]benzene (BCAMB) or 1,4-bis[(bromoacetoxy)methyl]benzene (BBAMB) using quaternary onium salts or crown ether complexes as catalysts. The polyaddition reaction of diglycidyl ether of bisphenol A (DGEBA) with BCAMB proceeded very smoothly with high yields (83–96%) by the addition of quaternary onium salts such as tetrabutylphosphonium bromide (TBPB) or crown ether complexes such as 18-crown-6/KBr as catalysts to produce high molecular weight polymers, although the reaction occurred without any catalyst to give low molecular weight polymer in low yield at 90°C for 48 h. It was also found that the reaction proceeded smoothly in aprotic polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) to produce high molecular weight polymers. Polyaddition reactions of DGEBA or digylcidyl ether of ethylene glycol (DGEEG) with BBAMB, other bis(chloroacetoxy)esters or bis(bromoacetoxy)esters using TBPB in DMAc also proceeded smoothly to give the corresponding polymers. The resulting poly(ether-ester)s contain reactive halomethyl groups as side chains, which were introduced during main chain formation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3791–3799, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号