首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To meet newer environmental standards, modified plant proteins have been studied as no‐added formaldehyde wood adhesives for interior applications. Many methods have been developed to increase the wet strength of wood products bonded with soy adhesives. These methods involve modifying the soy in separate steps prior to formulating the adhesive or adding a polymerizable co‐reactant to the soy. We show that adding periodate, permanganate, or iodate to soy flour improved the strength of soy adhesive bonds in small‐scale testing and in plywood shear, especially when tested under wet conditions. Periodate improved the bond strength of other plant materials (lupine, canola, and cottonseed) but none of these produced as high of a wet strength as the soy flour. We investigated other oxidants with plant proteins. Permanganate was quite effective and iodate was somewhat effective, whereas nitric acid, chlorate, perchlorate, and bromate were not effective in increasing wet strength. The available data are consistent with oxidation of the carbohydrate–protein mixture in plant flours to provide adhesives with increased wet strength in wood bonds. This mechanism was also supported by the improved wet strength with the addition of dialdehydes (glyoxal and glutaraldehyde). The purified soy protein also gave strength improvement with periodate. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1017–1023  相似文献   

2.
Due to its carcinogenic properties, the presence of formaldehyde in resins and other industrial products has been a subject of great concern in recent years. The presented review focuses on modern alternatives for the production of wood-based panels; i.e., substitutes for formaldehyde in the production of amino and phenolic resins, as well as novel hardeners for formaldehyde-free wood adhesives. Solutions in which formaldehyde in completely replaced are presented in this review. Recent advances indicate that it is possible to develop new formaldehyde-free systems of resins with compatible hardeners. The formaldehyde substitutes that have primarily been tested are glyoxal, glutaraldehyde, furfural, 5-hydroxymethylfurfural, and dimethoxyethanal. The use of such substitutes eliminates the problem of free formaldehyde emission originating from the resin used in the production of wood-based panels. However, these alternatives are mostly characterized by worse reactivity, and, as a result, the use of formaldehyde-free resins may affect the mechanical and strength properties of wood-based panels. Nonetheless, there are still many substantial challenges for the complete replacement of formaldehyde and further research is needed, especially in the field of transferring the technology to industrial practice.  相似文献   

3.
Adhesive hydrogels have broad applications in tissue adhesives, hemostatic agents, and biomedical sensors. Various bio-inspired glues and synthetic adhesives are clinically used as conventional hemostatic agents and auxiliary tools for wound closure. Medical adhesives are needed to effectively and quickly control bleeding, thereby reducing the risk of complications caused by severe blood loss. Medical sensors need to have excellent skin compliance, mechanical properties, sensitivity, and biological safety. This review focuses on recent progress in adhesive hydrogel systems, their structures, adhesion mechanisms, construction strategies, and emerging applications in the biomedical field.  相似文献   

4.
5.
This review article is based on the recent trends and development of biobased polyurethane (PU) adhesives from vegetable oil. A detail discussion has been reported about the PU adhesive starting from petroleum based to biobased source. Special attention has been given towards the utilization of castor oil based PU in adhesive technology, due to the wide range of castor oil among all vegetable oil. The appreciable adhesion, mechanical, thermal properties of vegetable oil based PU adhesives were compared with petroleum based PU adhesive, which were utilized to meet the specific application in adhesion industry.  相似文献   

6.
Marine mussels secret protein‐based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol‐functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate‐forming adhesives, mechanically improved nano‐ and micro‐composite adhesive hydrogels, as well as smart and self‐healing materials. Finally, we review the applications of catechol‐functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 9–33  相似文献   

7.
Commercial adhesives typically fall into two categories: structural or pressure sensitive. Structural glues rely on covalent bonds formed during curing and provide high tensile strength whilst pressure-sensitive adhesives use physical bonding to provide weaker adhesion, but with considerable convenience for the user. Here, a new class of adhesive is presented that is also reversible, with a bond strength intermediate between those of pressure-sensitive and structural adhesives. Complementary water-based formulations incorporating oppositely charged polyelectrolytes form electrostatic bonds that may be reversed through immersion in a low or high pH aqueous environment. This electrostatic adhesive has the advantageous property that it exhibits good adhesion to low-energy surfaces such as polypropylene. Furthermore, it is produced by the emulsion copolymerization of commodity materials, styrene and butyl acrylate, which makes it inexpensive and opens the possibility of industrial production. Bio-based materials have been also integrated into the formulations to further increase sustainability. Moreover, unlike other water-based glues, adhesion does not significantly degrade in humid environments. Because such electrostatic adhesives do not require mechanical detachment, they are appropriate for the large-scale recycling of, e.g., bottle labels or food packaging. The adhesive is also suitable for dismantling components in areas as varied as automotive parts and electronics.  相似文献   

8.
Heat shrinkable tubes and tapes made of irradiated polyethylene have been produced for several years. The memory effect of such products is widely used in many industrial applications. Hot-melt adhesive is often applied to provide better sealing properties of heat shrinkable products.

Radiation grafting of hot-melt adhesives based on PP and copolymers like EVA was investigated. Several monomers were selected for radiation grafting process. Comparison of structural and mechanical properties with nonirradiated material was carried out.  相似文献   


9.
Mussel protein is a strong and water‐resistant adhesive, but is expensive and not readily available. Soy protein is inexpensive, abundant, and annually renewable, but suffers from low adhesive strengths and low water resistance of the bonded products. This study reveals that introducing a key functional group from the marine adhesive protein to soy protein converts the soy protein to a strong and water‐resistant wood adhesive.  相似文献   

10.
Nowadays, robust underwater adhesives products are highly demanded both in industrial and biomedical fields. Meanwhile, study of the underwater adhesion mechanism of natural organisms under fluid environment is necessary, which provides inspiration for engineering adhesive materials that can be used in wet environment. Scientists are committed to discovering the unique adhesion mechanisms of protein adhesives for natural organisms. Especially, recent understanding of wet adhesion mechanisms provides designable inspiration for developing novel synthetic underwater adhesives with high performance by using 3,4-dihydroxyphenylalanine-based and coacervate-enabled strategies. Although pursuing robust interface bonding in these years, controlling the wet adhesion state with reversible/switchable feature is the latest goal for developing intelligent biomimetic adhesives, which implies important applications in multiple fields.  相似文献   

11.
Summary: Extensive studies using mussel adhesive protein as a formaldehyde‐free, strong, and water‐resistant adhesive model revealed that a combination of a polymer with catechol moieties and a polymer with amino groups could serve as a strong and water‐resistant wood adhesive. This study demonstrated that the treatment of abundant and readily available brown‐rot‐fungus‐decayed wood with NaBH4 followed by mixing with polyethylenimine resulted in a formaldehyde‐free, strong, and water‐resistant wood adhesive.

Lignin is demethylated by brown‐rot fungi and then reduced using NaBH4.  相似文献   


12.
Formaldehyde based resins are by far the most important adhesives for the production of wood based panels. This paper reviews in compact form the main application near features of these products including their composition, their molar mass distribution as well as their hardening behaviour, which all three parameters have decisive influence on the properties of the resins themselves and their performance as wood adhesives.  相似文献   

13.
Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.  相似文献   

14.
As the second most abundant biopolymer, lignin remains underutilized in various industrial applications. Various forms of lignin generated from different methods affect its physical and chemical properties to a certain extent. To promote the broader commercial utilization of currently available industrial lignins, lignin sulfonate (SL), kraft lignin (KL), and organosolv lignin (OL) are utilized to partially replace phenol in the synthesis of phenol formaldehyde (PF) adhesives. The impact of lignin production process on the effectiveness of lignin-based phenolic (LPF) adhesives is examined based on the structural analysis of the selected industrial lignin. The results show that OL has more phenolic hydroxyl groups, lower molecular weight, and greater number of reactive sites than the other two types of lignins. The maximum replacement rate of phenol by OL reaches 70% w/w, resulting in organosolv lignin phenolic (OLPF) adhesives with a viscosity of 960 mPa·s, a minimal free formaldehyde content of 0.157%, and a shear strength of 1.84 MPa. It exhibits better performance compared with the other two types of lignin-based adhesives and meets the requirements of national standards.  相似文献   

15.
Adhesives obtained by copolymerizing urea, formaldehyde, and difunctional polyetheramine with different molecular weights (230, 600, 900, and 2000 g mol−1) are presented as a more resilient alternative to conventional urea–formaldehyde resins. Urea and polyetheramine contents were varied and the resulting resins characterized by FTIR, 13C‐NMR, and TGA. These resins were used for production of agglomerated cork panels, an application that demands that the binder system is flexible. Polyetheramine with molecular weight 900 g mol−1 yielded the most promising agglomerated cork panel, with remarkable flexibility, good tensile strength, and with the E1 formaldehyde content specification for wood‐based panels used in construction, according to European Standard EN 12460‐5. These new thermoset adhesives have demonstrated to be capable of being used in systems where conventional formaldehyde‐based resins do not perform well due to inherent high rigidity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1834–1843  相似文献   

16.
The general properties of adhesives and compounds for electronic articles are described that were elaborated by the company: TK-1 adhesive with elevated thermal conductivity; TEK-type adhesives that demonstrate higher elasticity and adhesion ability; TK-8-type all-purpose adhesives; MS-type, single-packed, thermally stable glues for long storage; electrically conductive adhesives; TPK-1 and TPK-2 magnetic adhesives and TPK-3 nonmagnetic adhesive; and some compounds, e.g., epoxide molding compositions. The functionality of all adhesives and compounds presented were tested for weather factors, including elevated humidity, higher and lower temperatures, thermal cycles, effects of vibrations for both pilot samples, and final articles of electronic mechanisms.  相似文献   

17.
Floor adhesives on cement-based substrates may degrade if the pH is high enough and this has in many cases led to emissions of odorous substances and deteriorated indoor air quality. We have used isothermal calorimetry to assess the degradation rate of two floor adhesives as a function of pH. The rate of heat production measured by the calorimeter is proportional to the reaction rate. The degradation rate was similar for a “standard” and a “low emitting” adhesive, but the low emitting adhesive did not release volatile reaction products. The results show that adhesive degradation is strongly pH dependent. A model of alkaline hydrolysis based on two reaction sites is discussed.  相似文献   

18.
To investigate the effects of lignin methylolation and lignin adding stage on the resulted lignin-based phenolic adhesives, Alcell lignin activated with NaOH (AL) or methylolation (ML) was integrated into the phenolic adhesives system by replacing phenol at various adhesive synthesis stages or directly co-polymerizing with phenolic adhesives. Lignin integration into phenolic adhesives greatly increased the viscosity of the resultant adhesives, regardless of lignin methylolation or adding stage. ML introduction at the second stage of adhesive synthesis led to much bigger viscosity than ML or AL introduction into phenolic adhesives at any other stages. Lignin methylolation and lignin adding stage did not affect the thermal stability of lignin based phenolic adhesives, even though lignin-based adhesives were less thermally stable than NPF. Typical three-stage degradation characteristics were also observed on all the lignin-based phenolic adhesives. Three-ply plywoods can be successfully laminated with lignin based adhesives, and it was interesting that after 3 h of cooking in boiling water, the plywoods specimens bonded with lignin-based phenolic adhesives displayed higher bonding strength than the corresponding dry strength obtained after direct conditioning at 20 °C and 65% RH. Compared with NPF, lignin introduction significantly reduced the bonding strength of lignin based phenolic adhesives when applied for plywood lamination. However, no significant variation of bonding strength was detected among the lignin based phenolic adhesives, regardless of lignin methylolation or adding stages.  相似文献   

19.
Low molecular weight epoxy resin based on bis (4‐hydroxy phenyl) 1,1 cyclohexane was prepared and modified with various types of the prepared phenolic resins. Phenol–, cresol–, resorcinol–and salicylic acid–formaldehyde resins were used. The optimum conditions of formulation and curing process were studied to obtain modified wood adhesives characterized by high tensile shear strength values. This study indicated that the more suitable conditions are 1:2 weight ratio of phenol–or cresol–formaldehyde to epoxy resin in the presence of phthalic anhydride (20 wt%) of the resin content as a curing agent at 150°C for 80 min. Resorcinol–or salicylic acid–formaldehyde/epoxy resins formulated at 1:2 weight ratio were cured in the presence of paraformaldehyde (20 wt%) at 150°C for 60 min. The effect of the structure of phenolic resins on the tensile shear strength values of formulated resin samples, when mixed with the epoxy resins and cured under the previously mentioned optimum conditions for different times, was investigated. Metallic and glass coatings from the previous resins were also prepared and evaluated as varnishes or paints. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号