首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We give a direct combinatorial O(n3logn) algorithm for minimizing the number of late jobs on a single machine when jobs have release times and preemptions are allowed. Our algorithm improves the earlier O(n5) and O(n4) dynamic programming algorithms for this problem.  相似文献   

2.
In this paper, sequential and parallel algorithms are presented to find a maximum independent set with largest weight in a weighted permutation graph. The sequential algorithm, which is designed based on dynamic programming, runs in timeO(nlogn) and requiresO(n) space. The parallel algorithm runs inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM.  相似文献   

3.
In the Connected Red–Blue Dominating Set problem we are given a graph G whose vertex set is partitioned into two parts R and B (red and blue vertices), and we are asked to find a connected subgraph induced by a subset S of B such that each red vertex of G is adjacent to some vertex in S. The problem can be solved in O?(2n−|B|) time by reduction to the Weighted Steiner Tree problem. Combining exhaustive enumeration when |B| is small with the Weighted Steiner Tree approach when |B| is large, solves the problem in O?(n1.4143). In this paper we present a first non-trivial exact algorithm whose running time is in O?(n1.3645). We use our algorithm to solve the Connected Dominating Set problem in O?(n1.8619). This improves the current best known algorithm, which used sophisticated run-time analysis via the measure and conquer technique to solve the problem in O?(n1.8966).  相似文献   

4.
A simple parallel randomized algorithm to find a maximal independent set in a graph G = (V, E) on n vertices is presented. Its expected running time on a concurrent-read concurrent-write PRAM with O(|E|dmax) processors is O(log n), where dmax denotes the maximum degree. On an exclusive-read exclusive-write PRAM with O(|E|) processors the algorithm runs in O(log2n). Previously, an O(log4n) deterministic algorithm was given by Karp and Wigderson for the EREW-PRAM model. This was recently (independently of our work) improved to O(log2n) by M. Luby. In both cases randomized algorithms depending on pairwise independent choices were turned into deterministic algorithms. We comment on how randomized combinatorial algorithms whose analysis only depends on d-wise rather than fully independent random choices (for some constant d) can be converted into deterministic algorithms. We apply a technique due to A. Joffe (1974) and obtain deterministic construction in fast parallel time of various combinatorial objects whose existence follows from probabilistic arguments.  相似文献   

5.
This paper presents fast parallel algorithms for the following graph theoretic problems: breadth-depth search of directed acyclic graphs; minimum-depth search of graphs; finding the minimum-weighted paths between all node-pairs of a weighted graph and the critical activities of an activity-on-edge network. The first algorithm hasO(logdlogn) time complexity withO(n 3) processors and the remaining algorithms achieveO(logd loglogn) time bound withO(n 2[n/loglogn]) processors, whered is the diameter of the graph or the directed acyclic graph (which also represents an activity-on-edge network) withn nodes. These algorithms work on an unbounded shared memory model of the single instruction stream, multiple data stream computer that allows both read and write conflicts.  相似文献   

6.
We give a linear time reduction of the problem of finding a minimum independent dominating set in a permutation graph, into that of finding a shortest maximal increasing subsequence. We then give an O(n log2n)-time algorithm for solving the second (and hence the first) problem. This improves on the O(n3)-time algorithm given in [4] for solving the problem of finding a minimum independent dominating set in a permutation graph.  相似文献   

7.
An algorithm for finding a polygon with minimum number of edges nested in two simplen-sided polygons is presented. The algorithm solves the problem in at mostO(n logn) time, and improves the time complexity of two previousO(n 2) algorithms.The work was supported by NSERC grant OPG0041629.  相似文献   

8.
A parallel algorithm for depth-first searching of a directed acyclic graph (DAG) on a shared memory model of a SIMD computer is proposed. The algorithm uses two parallel tree traversal algorithms, one for the preorder traversal and the other for therpostorder traversal of an ordered tree. Each of these traversal algorithms has a time complexity ofO(logn) whenO(n) processors are used,n being the number of vertices in the tree. The parallel depth-first search algorithm for a directed acyclic graphG withn vertices has a time complexity ofO((logn)2) whenO(n 2.81/logn) processors are used.  相似文献   

9.
In physical VLSI design, network design (wiring) is the most time-consuming phase. For solving global wiring problems, we propose to first compute from the layout geometry a graph that preserves all shortest paths between pairs of relevant points, and then to operate on that graph for computing shortest paths, Steiner minimal tree approximations, or the like. For a set of points and a set of simple orthogonal polygons as obstacles in the plane, withn input points (polygon corner or other) altogether, we show how a shortest paths preserving graph of sizeO(n logn) can be computed in timeO(n logn) in the worst case, with spaceO(n). We illustrate the merits of this approach with a simple example: If the length of a longest edge in the graph is bounded by a polynomial inn, an assumption that is clearly fulfilled for graphs derived from VLSI layout geometries, then a shortest path can be computed in timeO(n logn log logn) in the worst case; this result improves on the known best one ofO(n(logn)3/2).  相似文献   

10.
Pseudorandom generators for space-bounded computation   总被引:4,自引:0,他引:4  
Noam Nisan 《Combinatorica》1992,12(4):449-461
Pseudorandom generators are constructed which convertO(SlogR) truly random bits toR bits that appear random to any algorithm that runs inSPACE(S). In particular, any randomized polynomial time algorithm that runs in spaceS can be simulated using onlyO(Slogn) random bits. An application of these generators is an explicit construction of universal traversal sequences (for arbitrary graphs) of lengthn O(logn).The generators constructed are technically stronger than just appearing random to spacebounded machines, and have several other applications. In particular, applications are given for deterministic amplification (i.e. reducing the probability of error of randomized algorithms), as well as generalizations of it.This work was done in the Laboratory for Computer Science, MIT, supported by NSF 865727-CCR and ARO DALL03-86-K-017  相似文献   

11.
We give improved solutions for the problem of generating thek smallest spanning trees in a graph and in the plane. Our algorithm for general graphs takes timeO(m log(m, n)=k 2); for planar graphs this bound can be improved toO(n+k 2). We also show that thek best spanning trees for a set of points in the plane can be computed in timeO(min(k 2 n+n logn,k 2+kn log(n/k))). Thek best orthogonal spanning trees in the plane can be found in timeO(n logn+kn log log(n/k)+k 2).  相似文献   

12.
Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, theFibonacci heap (or F-heap) supports arbitrary deletion inO(logn) amortized time and other heap operations inO(1) amortized time. In this paper we use F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containingn vertices andm edges, our minimum spanning tree algorithm runs inO(m logβ (m, n)) time, improved fromO((m, n)) time, whereβ(m, n)=min {i|log(i) nm/n}. Our minimum spanning tree algorithm for directed graphs runs inO(n logn + m) time, improved fromO(n log n +m log log log(m/n+2) n). Both algorithms can be extended to allow a degree constraint at one vertex. Research supported in part by National Science Foundation Grant MCS-8302648. Research supported in part by National Science Foundation Grant MCS-8303139. Research supported in part by National Science Foundation Grant MCS-8300984 and a United States Army Research Office Program Fellowship, DAAG29-83-GO020.  相似文献   

13.
Cheriyan and Hagerup developed a randomized algorithm to compute the maximum flow in a graph with n nodes and m edges in O(mn + n2 log2n) expected time. The randomization is used to efficiently play a certain combinatorial game that arises during the computation. We give a version of their algorithm where a general version of their game arises. Then we give a strategy for the game that yields a deterministic algorithm for computing the maximum flow in a directed graph with n nodes and m edges that runs in time O(mn(logm/n log nn)). Our algorithm gives an O(mn) deterministic algorithm for all m/n = Ω(nε) for any positive constant ε, and is currently the fastest deterministic algorithm for computing maximum flow as long as m/n = ω(log n).  相似文献   

14.
We address the problem of computing homotopic shortest paths in the presence of obstacles in the plane. Problems on homotopy of paths received attention very recently [Cabello et al., in: Proc. 18th Annu. ACM Sympos. Comput. Geom., 2002, pp. 160–169; Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. We present two output-sensitive algorithms, for simple paths and non-simple paths. The algorithm for simple paths improves the previous algorithm [Efrat et al., in: Proc. 10th Annu. European Sympos. Algorithms, 2002, pp. 411–423]. The algorithm for non-simple paths achieves O(log2n) time per output vertex which is an improvement by a factor of O(n/log2n) of the previous algorithm [Hershberger, Snoeyink, Comput. Geom. Theory Appl. 4 (1994) 63–98], where n is the number of obstacles. The running time has an overhead O(n2+) for any positive constant . In the case k<n2+, where k is the total size of the input and output, we improve the running to O((n+k+(nk)2/3)logO(1)n).  相似文献   

15.
We establish an O(nlog2n) upper bound on the time for deterministic distributed broadcasting in multi-hop radio networks with unknown topology. This nearly matches the known lower bound of Ω(nlogn). The fastest previously known algorithm for this problem works in time O(n3/2). Using our broadcasting algorithm, we develop an O(n3/2log2n) algorithm for gossiping in the same network model.  相似文献   

16.
In this paper we consider theSteiner multicutproblem. This is a generalization of the minimum multicut problem where instead of separating nodepairs, the goal is to find a minimum weight set of edges that separates all givensetsof nodes. A set is considered separated if it is not contained in a single connected component. We show anO(log3(kt)) approximation algorithm for the Steiner multicut problem, wherekis the number of sets andtis the maximum cardinality of a set. This improves theO(t log k) bound that easily follows from the previously known multicut results. We also consider an extension of multicuts to directed case, namely the problem of finding a minimum-weight set of edges whose removal ensures that none of the strongly connected components includes one of the prespecifiedknode pairs. In this paper we describe anO(log2 k) approximation algorithm for this directed multicut problem. Ifk ? n, this represents an improvement over theO(log n log log n) approximation algorithm that is implied by the technique of Seymour.  相似文献   

17.
We consider a collectionH ofn hyperplanes in E d (where the dimensiond is fixed). An ε-cutting forH is a collection of (possibly unbounded)d-dimensional simplices with disjoint interors, which cover all E d and such that the interior of any simplex is intersected by at mostεn hyperplanes ofH. We give a deterministic algorithm for finding a (1/r)-cutting withO(r d ) simplices (which is asymptotically optimal). Forrn 1−σ, where δ>0 is arbitrary but fixed, the running time of this algorithm isO(n(logn) O(1) r d−1). In the plane we achieve a time boundO(nr) forr≤n 1−δ, which is optimal if we also want to compute the collection of lines intersecting each simplex of the cutting. This improves a result of Agarwal, and gives a conceptually simpler algorithm. For ann point setX⊆E d and a parameterr, we can deterministically compute a (1/r)-net of sizeO(rlogr) for the range space (X, {X ϒ R; R is a simplex}), In timeO(n(logn) O(1) r d−1 +r O(1)). The size of the (1/r)-net matches the best known existence result. By a simple transformation, this allows us to find ε-nets for other range spaces usually encountered in computational geometry. These results have numerous applications for derandomizing algorithms in computational geometry without affecting their running time significantly. A preliminary version of this paper appeared inProceedings of the Sixth ACM Symposium on Computational Geometry, Berkeley, 1990, pp. 1–9. Work on this paper was supported by DIMACS Center.  相似文献   

18.
We obtain the first NC algorithm for the low-diameter graph decomposition problem on arbitrary graphs. Our algorithm runs in O(log5(n)) time, and uses O(n2) processors. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
We consider the following two instances of the projective clustering problem: Given a set S of n points in and an integer k>0, cover S by k slabs (respectively d-cylinders) so that the maximum width of a slab (respectively the maximum diameter of a d-cylinder) is minimized. Let w* be the smallest value so that S can be covered by k slabs (respectively d-cylinders), each of width (respectively diameter) at most w*. This paper contains three main results: (i) For d=2, we present a randomized algorithm that computes O(klogk) strips of width at most w* that cover S. Its expected running time is O(nk2log4n) if k2logkn; for larger values of k, the expected running time is O(n2/3k8/3log14/3n). (ii) For d=3, a cover of S by O(klogk) slabs of width at most w* can be computed in expected time O(n3/2k9/4polylog(n)). (iii) We compute a cover of by O(dklogk) d-cylinders of diameter at most 8w* in expected time O(dnk3log4n). We also present a few extensions of this result.  相似文献   

20.
Faster Subtree Isomorphism   总被引:2,自引:0,他引:2  
We study the subtree isomorphism problem: Given trees H and G, find a subtree of G which is isomorphic to H or decide that there is no such subtree. We give an O((k1.5/log k)n)-time algorithm for this problem, where k and n are the number of vertices in H and G, respectively. This improves over the O(k1.5n) algorithms of Chung and Matula. We also give a randomized (Las Vegas) O(k1.376n)-time algorithm for the decision problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号