首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Gross–Pitaevskii equation (GPE) describing the evolution of the Bose–Einstein condensate (BEC) order parameter for weakly interacting bosons supports dark solitons for repulsive interactions and bright solitons for attractive interactions. After a brief introduction to BEC and a general review of GPE solitons, we present our results on solitons that arise in the BEC of hard-core bosons, which is a system with strongly repulsive interactions. For a given background density, this system is found to support both a dark soliton and an antidark soliton (i.e., a bright soliton on a pedestal) for the density profile. When the background has more (less) holes than particles, the dark (antidark) soliton solution dies down as its velocity approaches the sound velocity of the system, while the antidark (dark) soliton persists all the way up to the sound velocity. This persistence is in contrast to the behaviour of the GPE dark soliton, which dies down at the Bogoliubov sound velocity. The energy–momentum dispersion relation for the solitons is shown to be similar to the exact quantum low-lying excitation spectrum found by Lieb for bosons with a delta-function interaction.  相似文献   

2.
赵强  顾强 《中国物理 B》2016,25(1):16702-016702
We study the formation of vortices in a dipolar Bose–Einstein condensate in a synthetic magnetic field by numerically solving the Gross–Pitaevskii equation. The formation process depends on the dipole strength, the rotating frequency, the potential geometry, and the orientation of the dipoles. We make an extensive comparison with vortices created by a rotating trap, especially focusing on the issues of the critical rotating frequency and the vortex number as a function of the rotating frequency. We observe that a higher rotating frequency is needed to generate a large number of vortices and the anisotropic interaction manifests itself as a perceptible difference in the vortex formation. Furthermore, a large dipole strength or aspect ratio also can increase the number of vortices effectively. In particular, we discuss the validity of the Feynman rule.  相似文献   

3.
We demonstrate the existence of phase fluctuations in elongated Bose–Einstein condensates (BECs) and study the dependence of these fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the phase-coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation is developed. Received: 13 July 2001 / Revised version: 28 September 2001 / Published online: 23 November 2001  相似文献   

4.
An overview of the physics of spinor and dipolar Bose–Einstein condensates (BECs) is given. Mean-field ground states, Bogoliubov spectra, and many-body ground and excited states of spinor BECs are discussed. Properties of spin-polarized dipolar BECs and those of spinor–dipolar BECs are reviewed. Some of the unique features of the vortices in spinor BECs such as fractional vortices and non-Abelian vortices are delineated. The symmetry of the order parameter is classified using group theory, and various topological excitations are investigated based on homotopy theory. Some of the more recent developments in a spinor BEC are discussed.  相似文献   

5.
6.
We investigate a kind of solitons in the two-component Bose–Einstein condensates with axisymmetric configurations in the R2×S1space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional(3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross–Pitaevskii equations in imaginary time.  相似文献   

7.
冀慎统  王元生  罗月娥  刘学深 《中国物理 B》2016,25(9):90303-090303
The interference between two condensates with repulsive interaction is investigated numerically by solving the onedimensional time-dependent Gross–Pitaevskii equation.The periodic interference pattern forms in two condensates,which are prepared in a double-well potential consisting of two truncated harmonic wells centered at different positions.Dark solitons are observed when two condensates overlap.Due to the existence of atom–atom interactions,atoms are transferred among the ground state and the excited states,which coincides with the condensate energy change.  相似文献   

8.
The coherent and collective nature of a Bose–Einstein condensate can enhance or suppress physical processes. Bosonic stimulation enhances scattering in already occupied states which leads to matter wave amplification, and the suppression of dissipation leads to superfluidity. In this article we present several experiments where enhancement and suppression have been observed and discuss the common roots of and differences between these phenomena.  相似文献   

9.
We consider a spin-1 Bose-Einstein condensate trapped in a harmonic potential with different nonlinearity coeffi- cients. We illustrate the dynamics of soliton breathers in two-component and three-component states by numerically solv- ing the one-dimensional time-dependent coupled Gross-Pitaecskii equations (GPEs). We present that two condensates with repulsive interspecies interactions make elastic collision and novel soliton breathers are created in two-component state. We also demonstrate novel soliton breathers in three-component state with attractive coupling constants. Furthermore, possible reasons for creating soliton breathers are discussed.  相似文献   

10.

We study a multi-group version of the mean-field or Curie–Weiss spin model. For this model, we show how, analogously to the classical (single-group) model, the three temperature regimes are defined. Then we use the method of moments to determine for each regime how the vector of the group magnetisations behaves asymptotically. Some possible applications to social or political sciences are discussed.

  相似文献   

11.
We investigate the properties of Bose–Einstein condensates(BECs) in a two-dimensional quasi-periodic optical lattice(OL) with eightfold rotational symmetry by numerically solving the Gross–Pitaevskii equation. In a stationary external harmonic trapping potential, we first analyze the evolution of matter-wave interference pattern from periodic to quasiperiodic as the OL is changed continuously from four-fold periodic to eight-fold quasi-periodic. We also investigate the transport properties during this evolution for different interatomic interaction and lattice depth, and find that the BEC crosses over from ballistic diffusion to localization. Finally, we focus on the case of eightfold symmetric lattice and consider a global rotation imposed by the external trapping potential. The BEC shows vortex pattern with eightfold symmetry for slow rotation, becomes unstable for intermediate rotation, and exhibits annular solitons with approximate axial symmetry for fast rotation. These results can be readily demonstrated in experiments using the same configuration as in Phys. Rev.Lett. 122 110404(2019).  相似文献   

12.
13.
A space-dependent atomic superfluid current with an explicit analytical expression and its role in Bose–Einstein condensates are studied. The factors determining the intensity and oscillating amplitude of the space-dependent atomic superfluid current are explored in detail. Research findings reveal that the intensity of the current can be regulated by setting an appropriate configuration of the trap and its oscillating amplitude can be adjusted via Feshbach resonance. It is numerically demonstrated that the space-dependent atomic superfluid current can exert great influence on the spatial distribution of condensed atoms, and even force condensed atoms into very complex distributional states with spatial chaos.  相似文献   

14.
15.
We report on the observation of time-domain interference with Bose–Einstein condensates, by means of a double separated oscillator technique. We discuss the decay of the Ramsey oscillations amplitude, that in our system occurs on a time scale of tens of microseconds. To elucidate the origin of this fast decay, we compare the behaviour of a condensate with that of a thermal cloud.  相似文献   

16.
17.
By generalizing the Green’s function approach developed by Beliaev [S.T. Beliaev, Sov. Phys. JETP 7 (1958) 299; S.T. Beliaev, Sov. Phys. JETP 7 (1958) 289], we study effects of quantum fluctuations on the energy spectra of spin-1 spinor Bose–Einstein condensates, in particular, of a 87Rb condensate in the presence of an external magnetic field. We find that due to quantum fluctuations, the effective mass of magnons, which characterizes the quadratic dispersion relation of spin-wave excitations, increases compared with its mean-field value. The enhancement factor turns out to be the same for two distinct quantum phases: the ferromagnetic and polar phases, and it is a function of only the gas parameter. The lifetime of magnons in a spin-1 87Rb spinor condensate is shown to be much longer than that of phonons due to the difference in their dispersion relations. We propose a scheme to measure the effective mass of magnons in a spinor Bose gas by utilizing the effect of magnons’ nonlinear dispersion relation on the time evolution of the distribution of transverse magnetization. This type of measurement can be applied, for example, to precision magnetometry.  相似文献   

18.
We investigate the dynamics of bright matter wave solitons in spin-1 Bose–Einstein condensates with time modulated nonlinearities. We obtain soliton solutions of an integrable autonomous three-coupled Gross–Pitaevskii (3-GP) equations using Hirota?s method involving a non-standard bilinearization. The similarity transformations are developed to construct the soliton solutions of non-autonomous 3-GP system. The non-autonomous solitons admit different density profiles. An interesting phenomenon of soliton compression is identified for kink-like nonlinearity coefficient with Hermite–Gaussian-like potential strength. Our study shows that these non-autonomous solitons undergo non-trivial collisions involving condensate switching.  相似文献   

19.
We present exact solutions to the two-component Bose–Einstein condensates by adopting a method of separating the variables, which exhibit nontrivial topology. These solitonic solutions can form 3D skyrmion and knot in the three-dimensional system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号