首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equations governing transient two-phase fluid-particle laminar flow over an infinite porous flat plate are developed. Both phases are assumed to behave as non-Newtonian power-law fluids. The mathematical model accounts for particle-phase viscous and diffusive effects. The particles are assumed spherical in shape and having a non-uniform density distribution. The resulting governing equations are nondimensionalized and solved numerically subject to appropriate initial and boundary conditions using an iterative, implicit, tri-diagonal finite-difference method. Graphical results for the displacement thicknesses and the skin-friction coefficients for both the fluid and particle phases are presented and discussed to illustrate special trends of the solutions.  相似文献   

2.
A time-varying flow through a porous medium of a dusty viscous incompressible Bingham fluid in a circular pipe is studied. A constant pressure gradient is applied in the axial direction, whereas the particle phase is assumed to behave as a viscous fluid. The effect of the medium porosity, the non-Newtonian fluid characteristics, and the particle phase viscosity on the transient behavior of the velocity, volumetric flow rates, and skin friction coefficients of both the fluid and particle phases is investigated. A numerical solution is obtained for the governing nonlinear momentum equations by using the method of finite differences.  相似文献   

3.
In order to understand the hydrodynamic interactions that can appear in a fluid particle motion, an original method based on the equations governing the motion of two immiscible fluids has been developed. These momentum equations are solved for both the fluid and solid phases. The solid phase is assumed to be a fluid phase with physical properties, such as its behaviour can be assimilated to that of pseudo‐rigid particles. The only unknowns are the velocity and the pressure defined in both phases. The unsteady two‐dimensional momentum equations are solved by using a staggered finite volume formulation and a projection method. The transport of each particle is solved by using a second‐order explicit scheme. The physical model and the numerical method are presented, and the method is validated through experimental measurements and numerical results concerning the flow around a circular cylinder. Good agreement is observed in most cases. The method is then applied to study the trajectory of one settling particle initially off‐centred between two parallel walls and the corresponding wake effects. Different particle trajectories related to particulate Reynolds numbers are presented and commented. A two‐body interaction problem is investigated too. This method allows the simulation of the transport of particles in a dilute suspension in reasonable time. One of the important features of this method is the computational cost that scales linearly with the number of particles. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes an analytical model of heat transfer in a two-dimensional, steady, nonreacting particle-containing channel flow. An idealized gas flow of specified uniform velocity between insulated parallel plates is assumed and the nonvaporizing particles are conceptualized as contained within an thin sheet injected at the symmetry plane. Two dimensionless parameters that affect the solution are described. These are the effective gas diffusivityK and the dimensionless particle number densityP. The linear, coupled differential equations governing the energy exchange between the gas and liquid phases are solved by means of the Green's function technique. This procedure yields a Volterra integral-series equation as the solution of the gas-phase energy equation. A series solution of this integral equation is obtained by the method of successive substitutions and terms up to second order are calculated.  相似文献   

5.
This paper deals with the analysis of two dimensional laminar thermophoretic flow over inclined plates. Cold wall conditions are assumed and the governing equations are solved by a finite difference marching technique. Results for the hydrodynamic, thermal and particle concentration boundary layers are obtained over a wide range of parameters. Special emphasis is placed on the external aerosol particle deposition process.  相似文献   

6.
纳米颗粒多相流研究是目前多相流研究中新的研究方向及重点发展领域. 为探索纳米尺度多相流相间作用机理及内部存在机制,采用理论分析及数值计算手段,对一般动力学方程的封闭处理、颗粒碰撞率宏观模型的有效构建、颗粒凝并系统动力学演变特性的机理分析、非稀相问题碰撞率的求取、双变量问题求解方法的建立以及一些实际应用进行了系统研究,提出了新的针对纳米尺度颗粒动力学演变的一般动力学方程求解方法,并将其应用于实际工业过程问题的研究. 该文对上述研究工作进行了综述.  相似文献   

7.
In relation to microrheology of blood, a theoretical approach to the motion of a red blood cell in a plane Couette flow between two parallel plates is made with emphasis on effects of wall. The red blood cell is assumed to be an elliptic cylindrical particle with a thin, inextensible membrane moving like a tank-tread along its perimeter and to contain a Newtonian fluid inside. Fluid motions are analysed numerically both inside and outside the particle on the basis of the Stokes equations, using the finite element method.A quasi-static equilibrium condition leads to the solution for the motion of the particle. It is shown that two types of motion exist (a stationary orientation motion and a flipping motion), depending on the viscosity ratio of inner to outer fluid, the axis ratio of the elliptic cylinder and the ratio of particle size to channel width. The results are applied to capillary blood flow.  相似文献   

8.
旋转直管内气固或液固两相流动浓度分布   总被引:1,自引:0,他引:1  
魏进家  姜培正 《力学季刊》1997,18(2):134-139
本文针对旋转直管内气固或液固两相流动,建立了经过适当简经处理的颗粒无量纲运动方程,得到了稳定状态下直管内颗粒的浓度分布公式,从而为气固两相流风机或液固两相流泵的颗粒浓度分布研究打下了基础。  相似文献   

9.
This study dealt with two-phase magnetohydrodynamic (MHD) flow and heat transfer in a parallel-plate channel. Both phases were incompressible and the flow was assumed to be steady, one-dimensional and fully developed. The present study was expected to be useful in the understanding of the effect of the presence of slag layers on the heat transfer characteristics of a coal-fired MHD generator.The problem was investigated, in which one of the two fluids was assumed to be electrically non-conducting. The transport properties of the two fluids were taken to be constant, and the plates were assumed to be maintained at constant and equal temperatures. In this case, the governing differential equations were linear, and an exact solution was obtained. Results were presented for various height and viscosity ratios for the two fluids and for two values of the electric field loading parameter. The governing equations were also solved numerically in order to verify the exact solution.  相似文献   

10.
Thermophoresis particle deposition with chemical reaction on Magnetohydrodynamic flow of an electrically conducting fluid over a porous stretching sheet in the presence of a uniform transverse magnetic field with variable stream conditions is investigated using scaling group transformation. Starting from Navier-Stokes equations and using scaling group transformations, the governing equations are obtained in the form of differential equations. The fluid viscosity is assumed to vary as a linear function of temperature. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of chemical reaction plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

11.
The results of numerically modeling two-dimensional two-phase flow of the “gas-solid particles” type in a vertical turbulent jet are presented for three cases of its configuration, namely, descending, ascending, and without account of gravity. Both flow phases are modeled on the basis of the Navier-Stokes equations averaged within the framework of the Reynolds approximation and closed by an extended k-? turbulence model. The averaged two-phase flow parameters (particle and gas velocities, particle concentration, turbulent kinetic energy, and its dissipation) are described using the model of mutually-penetrating continua. The model developed allows for both the direct effect of turbulence on the motion of disperse-phase particles and the inverse effect of the particles on turbulence leading to either an increase or a decrease in the turbulent kinetic energy of the gas. The model takes account for gravity, viscous drag, and the Saffman lift. The system of equations is solved using a difference method. The calculated results are in good agreement with the corresponding experimental data which confirms the effect of solid particles on the mean and turbulent characteristics of gas jets.  相似文献   

12.
Using the two-velocity, two-temperature model of a continuous medium, the viscousgravitational flow of a mixture of incompressible liquid and solid particles in a vertical round tube is considered. The free-convection equations are written down on the basis of the general equation of motion and the energy equation of a two-phase medium [1, 2]. Using a finite Hankel integral transformation, a solution is constructed for the case of a linear wall-temperature distribution along the tube. The results of some practical calculations of the velocity and temperature fields over the cross section of the tube are presented, together with the dimensionless heat-transfer coefficient expressed as a function of the Rayleigh number and phase concentration. Here it is assumed that the dynamic and thermal-interaction coefficients between the phases correspond to the Stokes mode of flow for each particle, as a result of which the velocity and thermal phase lag is very small [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 132–136, July–August, 1975.  相似文献   

13.
Analysis of hydromagnetic flow of a dusty fluid over a stretching sheet is carried out with a view to throw adequate light on the effects of fluid-particle interaction, particle loading, and suction on the flow characteristics. The equations of motion are reduced to coupled non-linear ordinary differential equations by similarity transformations. These coupled non-linear ordinary differential equations are solved numerically on an IBM 4381 with double precession, using a variable order, variable step-size finite-difference method. The numerical solutions are compared with their approximate solutions, obtained by a perturbation technique. For small values of β the exact (numerical) solution is in close agreement with that of the analytical (approximate) solution. It is observed that, even in the presence of a transverse magnetic field and suction, the transverse velocity of both the fluid and particle G phases decreases with an increase in the fluid-particle interaction parameter, β, or the particle-loading parameter, k. Moreover, the particle density is maximum at the surface of the stretching sheet, and the shearing stress increases with an increase in β or k.  相似文献   

14.
This article concerns with a steady two-dimensional flow of an electrically conducting incompressible fluid over a vertical stretching sheet. The flow is permeated by a uniform transverse magnetic field. The fluid viscosity is assumed to vary as a linear function of temperature. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two second-order ordinary differential equations corresponding to energy and diffusion equations are derived. The equations along with the boundary conditions are solved numerically. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet, the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of temperature-dependent fluid viscosity plays an important role on the concentration boundary layer. The results, thus, obtained are presented graphically and discussed.  相似文献   

15.
Basic equations in a two-dimensional fluidized bed are constructed for the particle and the fluid phases, and linear stability to two-dimensional disturbances of the volume fractions and the velocities of both phases is analyzed. The diffusion of particles and an effective viscosity in the particle phase are considered. It was found that the inertia term due to the average fluid velocity is responsible for the instability, while the particle diffusion and the effective particle viscosity suppress the growth of disturbances. It was also found that the most unstable state has a vertical wavenumber vector.  相似文献   

16.
An analysis is presented for the steady one-dimensional flow behind a normal shock wave of a compressible gas containing small spherical particles of solid propellant. The solids mass fraction is assumed large enough to require that the void volume fraction be retained as a variable in the governing conservation equations. The particles are ignited by the shocked air and by viscous interaction. Propellant gases are then generated which depend on the instantaneous size of the particles and on the linear burning rate. The latter is assumed dependent upon the local pressure and the particle temperature. These calculations are of interest because of the potential hazards of such particle flows, in that extreme pressures are predicted within the relaxation zone, pressures even greater than those calculated for the final equilibrium conditions. The results stress the importance of the Mach number of the normal (strong shock) and the energy content of the propellant (J/kg).  相似文献   

17.
高浓度固-液两相流紊流的动理学模型   总被引:5,自引:0,他引:5  
唐学林  徐宇  吴玉林 《力学学报》2002,34(6):956-962
采用分子动理学方法,基于固-液两相流液相分子或颗粒相颗粒的Boltzmann方程,对Boltzmann方程分别取零矩和一次矩,则得到高浓度固-液两相流紊流的连续方程和动量方程,再和较成熟的低浓度两相流连续方程和动量方程比较,取低浓度两相流控制方程中较成熟合理的有关项和高浓度时由动理学方法推导出的颗粒间碰撞项,则得到高浓度固-液两相流紊流的最终控制方程:连续方程和动量方程.  相似文献   

18.
In this paper, a steady magnetohydrodynamic (MHD) flow of a dusty incompressible electrically conducting Oldroyd 8-constant fluid through a circular pipe is examined with considering the ion slip effect. A constant pressure gradient in the axial direction and an external uniform magnetic field in the perpendicular direction are applied. A numerical solution is obtained for the governing nonlinear momentum equations by using finite differences. The effect of the ion slip, the non-Newtonian fluid characteristics, and the particle-phase viscosity on the velocity, volumetric flow rates, and skin friction coefficients of both the fluid and particle phases is reported.  相似文献   

19.
The motion of an inertial dispersed admixture near a plane cylinder immersed in a steady-state hypersonic dusty flow in the presence of an oblique shock wave interacting with the bow shock is considered. It is assumed that the free-stream particle mass concentration is small and the particles do not affect the carrier flow. The III and IV shock wave interaction regimes are considered. The gas flow parameters in the shock layer are calculated from the numerical solution of the full Navier-Stokes equations for the perfect gas. A TVD second-order finite-difference scheme constructed on the basis of a finite volume method is used. For calculating the dispersed-phase parameters, including the concentration, the full Lagrangian method is used. On a wide range of variation of the particle inertia parameters, the patterns of the particle trajectories, velocity, concentration, and temperature in the shock layer are studied. The possibility of aerodynamic focusing of the particles behind the shock wave intersection point and the formation of narrow beams with a high particle concentration is revealed. These beams impinge on the cylinder surface and result in a sharp increase in the local heat fluxes. The maximal possible increase in the heat fluxes caused by the particles colliding with the cylinder surface is estimated for the flows with and without the incident oblique shock wave.  相似文献   

20.
On the basis of an analysis of the pseudoturbulent motion of both the suspended particles and the carrier fluid, the normal stress components in the dispersed phase are obtained for the problem of inclined confined flows of finely dispersed suspensions and colloids. These hydrodynamic pulsations are due to the shear and the work done by the average relative flow of the fluid phase on random concentration fluctuations of the disperse system because of the substantial slip of the phases of the suspension under gravity. The momentum conservation equations for the particles are obtained with allowance for the angle of inclination of the flow to the vertical and on the basis of these equations the suspension capacity of the flow as a function of the angle of inclination, particle size, Galileo number and other parameters is illustrated.Ekaterinburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 78–84, January–February, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号