首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

2.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

3.
We investigate the growth behavior and microstructure of Ge self-assembled islands of nanometer dimension on Si (0 0 1) substrate patterned with hexagonally ordered holes of 25 nm depth, 30 nm diameter, and 7×1010 cm−2 density. At 9 Å Ge coverage and 650 °C growth temperature, Ge islands preferentially nucleate inside the holes, starting at the bottom perimeter. Approximately 14% of the holes are filled by Ge islands. Moiré fringe analysis reveals partial strain relaxation of about 72% on average, which is not uniform even within a single island. Crystalline defects such as dislocation are observed from islands smaller than 30 nm. Increased Ge coverage to 70 Å forms larger aggregates of many interconnected islands with slightly increased filling factor of about 17% of the holes. Reducing the growth temperature to 280 °C results in much higher density of islands with a filling factor of about 80% and with some aggregates. The results described in this report represent a potential approach for fabricating semiconductor quantum dots via epitaxy with higher than 1010 cm−2 density.  相似文献   

4.
Indium phosphide, gallium arsenide phosphide, and aluminum indium phosphide have been deposited by metalorganic vapor-phase epitaxy using tertiarybutylphosphine and tertiarybutylarsine. The effects of growth temperature and V/III ratio on the amount of silicon, sulfur, carbon, and oxygen in InP have been determined. Minimum incorporation was observed at 565 °C and a V/III ratio of 32. In this case, the material contained a background carrier concentration of 2.7×1014 cm−3, and the Hall mobilities were 4970 and 135,000 cm2/V s at 300 and 77 K. The oxygen contamination in AlInP was found to be only 9.0×1015 cm−3 for deposition at 650 °C and a V/III ratio of 35. The relative distribution of arsenic to phosphorus in GaAsyP1−y was determined at temperatures between 525 and 575 °C. The distribution coefficient [(NAs/NP)film/(PTBAs/PTBP)gas] ranged from 25.4 to 8.4, and exhibited an Arrhenius relationship with an apparent activation energy of 1.2 eV.  相似文献   

5.
Experimental results are presented for SiC epitaxial layer growths employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7×2″) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600°C. Specular epitaxial layers have been grown in the reactor at growth rates ranging from 3–5 μm/h. The thickest layer grown to date is 42 μm thick. The layers exhibit minimum unintentional n-type doping of 1×1015 cm−3, and room temperature mobilities of 1000 cm2/V s. Intentional n-type doping from 5×1015 cm−3 to >1×1019 cm−3 has been achieved. Intrawafer layer thickness and doping uniformities (standard deviation/mean at 1×1016 cm−3) are typically 4 and 7%, respectively, on 35 mm diameter substrates. Moderately doped, 4×1017 cm−3, layers, exhibit 3% doping uniformity. Recently, 3% thickness and 10% doping uniformity (at 1×1016 cm−3) has been demonstrated on 50 mm substrates. Within a run, wafer-to-wafer thickness deviation averages 9%. Doping variation, initially ranging as much as a factor of two from the highest to the lowest doped wafer, has been reduced to 13% at 1×1016 cm−3, by reducing susceptor temperature nonuniformity and eliminating exposed susceptor graphite. Ongoing developments intended to further improve layer uniformity and run-to-run reproducibility, are also presented.  相似文献   

6.
A comparative study of epitaxy of AlN, GaN and their alloys, grown on c-axis and off-axis substrates of single-crystal aluminum nitride has been carried out. Growth on off-axis (>30°) substrates appears to result in rough surfaces and the absence of two-dimensional electron gas (2DEG). However, smooth morphologies were demonstrated for both homoepitaxial and heteroepitaxial growth on on-axis (<2°) substrates. On one of these oriented substrates a 2DEG, with a mobility of 1000 cm2/V s and a sheet density of 8.5×1012 cm−2 at room temperature, was also demonstrated for the first time.  相似文献   

7.
Investigation of Ni/Au-contacts on p-GaN annealed in different atmospheres   总被引:1,自引:0,他引:1  
We investigated the effect of different annealing atmospheres on contact behaviour of Ni/Au contacts on moderately doped p-GaN layers. We used the annealing gases N2, O2, Ar, and forming gas (N2/H2) at varying annealing temperatures from 350°C to 650°C in steps of 50°C. The p-GaN samples were either metalorganic chemical vapor deposition or molecular beam epitaxy grown. Contact characterization was done after each annealing step by using the circular transmission line model. Specific contact resistances were determined to be in the low 10−4 Ω cm2 range for oxidized contacts. Accompanying chemical analysis using depth resolved Auger electron spectroscopy revealed that NiO was formed and Au diffused towards the interface, whereas annealing in forming gas prevented oxidation and did not lead to Ohmic behaviour.  相似文献   

8.
An Mg-doped p-GaN layer was grown by the metalorganic chemical vapor deposition method. The dissociation extent of hydrogen-passivated Mg acceptors in the p-GaN layer through Mg activation annealing was estimated by using room-temperature cathodoluminescence (CL) spectroscopy. The CL measurement revealed that the CL spectra intensities tend to increase with increasing the activation annealing temperature. The sample annealed at 925 °C showed the most intense emission and the narrowest width among the emission peaks. Consequently, it was the most excellent dissociation extent of Mg–H complexes caused by the Mg activation annealing. The hole concentration under this optimum condition was 1.3×1017 cm−3 at room temperature. The photoluminescence (PL) measurement showed a 2.8 eV band having characteristically a broad peak in heavily Mg-doped GaN at room temperature. By analyzing the PL results, we learned that this band was associated with the deep donor–acceptor pair (DAP) emission rather than with the emission caused by the transition from the conduction band to deep acceptor level. The four emission peaks in the resolved 2.8 eV band were emitted by transiting from deep donor levels of 0.14, 0.26, 0.40, and 0.62 eV below the conduction band to the shallow Mg acceptor level of 0.22 eV above the valence band.  相似文献   

9.
We have first of all studied (in reduced pressure–chemical vapour deposition) the high-temperature growth kinetics of SiGe in the 0–100% Ge concentration range. We have then grown very high Ge content (55–100%) SiGe virtual substrates at 850 °C. We have focused on the impact of the final Ge concentration on the SiGe virtual substrates’ structural properties. Polished Si0.5Ge0.5 virtual substrates were used as templates for the growth of the high Ge concentration part of such stacks, in order to minimize the severe surface roughening occurring when ramping up the Ge concentration. The macroscopic degree of strain relaxation increases from 99% up to values close to 104% as the Ge concentration of our SiGe virtual substrates increases from 50% up to 100% (discrepancies in-between the thermal expansion coefficients of Si and SiGe). The surface root mean square roughness increases when the Ge concentration increases, reaching values close to 20 nm for 100% of Ge. Finally, the field (the pile-up) threading dislocations density (TDD) decreases as the Ge concentration increases, from 4×105 cm−2 (1–2×105 cm−2) for [Ge]=50% down to slightly more than 1×105 cm−2 (a few 104 cm−2) for [Ge]=88%. For [Ge]=100%, the field TDD is of the order of 3×106 cm−2, however.  相似文献   

10.
Optical transient current spectroscopy (OTCS) has been used to investigate defects in the low-temperature-grown GaAs after postgrowth rapid thermal annealing (RTA). Two samples A and B were grown at 220°C and 360°C on (0 0 1) GaAs substrates, respectively. After growth, samples were subjected to 30 s RTA in the range of 500–800°C. Before annealing, X-ray diffraction measurements show that the concentrations of the excess arsenic for samples A and B are 2.5×1019 and 1×1019 cm−3, respectively. It is found that there are strong negative decay signals in the optical transient current (OTC) for the annealed sample A. Due to the influence of OTC strong negative decay signals, it is impossible to identify deep levels clearly from OTCS. For a comparison, three deep levels can be identified for sample B before annealing. They are two shallower deep levels and the so-called AsGa antisite defect. At the annealing temperature of 600°C, there are still three deep levels. However, their structures are different from those in the as-grown sample. OTC strong negative decay signals are also observed for the annealed sample B. It is argued that OTC negative decay signals are related to arsenic clusters.  相似文献   

11.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

12.
Crystalline ZnO nanoparticles were synthesized on Si substrates with or without a Au catalyst by a chemical vapor deposition (CVD) method using ZnS as the source material. The average sizes are in the range of 40–200 nm and the densities of 104–1010 cm−2. In the absence of an Au catalyst, the average nanoparticle size firstly decreases and then increases with increasing substrate temperature while the nanoparticle density decreases as the substrate temperature increases. In the presence of an Au catalyst, ZnO nanoparticles only grow when the substrate temperature is higher than 300°C and the higher the substrate temperature the denser the nanoparticles are deposited. The density of the ZnO nanoparticles grown on a Si (1 1 1) substrate is higher than that on a Si (1 0 0) substrate with or without Au catalyst.  相似文献   

13.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

14.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

15.
Germanium (1 1 1)-oriented crystals have been grown by the vertical Bridgman technique, in both detached and attached configurations. Microstructural characterization of these crystals has been performed using synchrotron white beam X-ray topography (SWBXT) and double axis X-ray diffraction. Dislocation densities were measured from X-ray topographs obtained using the reflection geometry. For detached-grown crystals, the dislocation density is on the order of 104 cm−2 in the seed region, and decreases in the direction of growth to less than 103 cm−2, and in some crystals reaches less than 102 cm−2. For crystals grown in the attached configuration, dislocation densities were on the order of 104 cm−2 in the middle of the crystals, increasing to greater than 105 cm−2 near the edge. The measured dislocation densities are in excellent agreement with etch pit density (EPD) results. Broadening and splitting of the rocking curve linewidths was observed in the vicinity of subgrain boundaries identified by X-ray topography in some of the attached-grown crystal wafers. The spatial distribution of rocking curve linewidths across the wafers corresponds to the spatial distribution of defect densities measured in the X-ray topographs and EPD micrographs.  相似文献   

16.
Material optimisation for AlGaN/GaN HFET applications   总被引:1,自引:0,他引:1  
An optimisation of some growth parameters for the epitaxy of AlGaN–GaN based heterostructure field effect transistors (HFET) at low pressure in a new 3 * 2″ MOVPE reactor is presented. Some possible processes for the growth of semi-insulating buffers have been identified and are described. TEM analysis shows that the insulating character is not due to a high density of dislocations, whereas SIMS analysis shows that classical impurity (Si, O and C) concentrations are in the same range as in conductive undoped layers. Further studies are needed to identify the traps responsible for the compensation of the GaN layers. The properties of the two-dimensional electron gas (2DEG) located at the AlGaN–GaN interface can be tuned by modifying the characteristics of the AlGaN layer and of the insulating buffer. The best mobility (1500 cm2 V−1 s−1 for n6×1012 cm−2) is obtained when using a thick buffer layer, whereas the sheet carrier density is found to increase with the Al content in the undoped supply layer and reaches 1.1×1013 cm−2 for a composition of 24%.  相似文献   

17.
Hydroxyapatite crystallization in the presence of acetaminophen   总被引:1,自引:0,他引:1  
The effect of acetaminophen; a widely used analgesic and fever reducing medicine; in supersaturated solutions of calcium phosphate was investigated under plethostatic conditions, at 37 °C, 0.15 M NaCl, pH 7.40. The rates of crystal growth measured in the presence of acetaminophen 1.654×10−4 mol dm−3 to 6.616×10−4 mol dm−3 were reduced by 43% to 79%, respectively. The inhibition effect on the crystal growth rate may be explained through adsorption onto the active growth sites. Kinetic analysis suggested Langmuir-type adsorption of acetaminophen on the HAP surface with a affinity value of 2.4×10−4 dm3 mol−1, for the substrate in the concentration range investigated. The electrophoretic mobility measurements showed that in the presence of acetaminophen the charge of the acetaminophen covered HAP particles was shifted to more negative values as compared to bare HAP. In the presence of acetaminophen no changes observed in the HAP overgrown morphology or in the apparent order of crystallization.  相似文献   

18.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

19.
This paper reports the growth and spectral properties of 3.5 at% Nd3+:LaVO4 crystal with diameter of 20×15 mm2 which has been grown by the Czochralski method. The spectral parameters were calculated based on Judd–Ofelt theory. The intensity parameters Ωλ are: Ω2=2.102×10−20 cm2, Ω4=3.871×10−20 cm2, Ω6=3.235×10−20 cm2. The radiative lifetime τr is 209 μs and calculated fluorescence branch ratios are: β1(0.88μm)=45.2, β2(1.06μm)=46.7, β3(1.34μm)=8.1. The measured fluorescence lifetime τf is 137 μm and the quantum efficiency η is 65.6%. The absorption band at 808 nm wavelength has an FWHM of 20 nm. The absorption and emission cross sections are 3×10−20 and 6.13×10−20 cm2, respectively.  相似文献   

20.
High quality GaN layer was obtained by insertion of high temperature grown AlN multiple intermediate layers with migration enhanced epitaxy method by the RF-plasma assisted molecular beam epitaxy on (0 0 01) sapphire substrates. The propagating behaviors of dislocations were studied, using a transmission electron microscope. The results show that the edge dislocations were filtered at the AlN/GaN interfaces. The bending propagation of threading dislocations in GaN above AlN interlayers was confirmed. Thereby, further reduction of dislocations was achieved. Dislocation density being reduced, the drastic increase of electron mobility to 668 cm2/V s was obtained at the carrier density of 9.5×1016 cm−3 in Si doped GaN layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号