首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytical model to describe the Gordon-Haus jitter has been introduced. We have analysed the effects of accumulated amplified spontaneous emission and Gordon-Haus jitter on the bit error rate (BER) performance for various digital modulation formats (that is, ASK, FSK and DPSK).  相似文献   

2.
The bit error rate (BER) performance of an optical soliton communication system is analyzed. Based on the jitter variance equation and the chi-square distribution for the amplified spontaneous emission noise, an analytic expression for the BER calculation is obtained. We have investigated the effects of Gordon-Haus jitter, which is due to the random phase shift of the soliton individual central wavelength induced by the amplified spontaneous emission noise of the amplifiers. Very good agreement has been obtained between our theory and the reported experimental results.  相似文献   

3.
Abstract

The bit error rate (BER) performance of an optical soliton communication system is analyzed. Based on the jitter variance equation and the chi-square distribution for the amplified spontaneous emission noise, an analytic expression for the BER calculation is obtained. We have investigated the effects of Gordon-Haus jitter, which is due to the random phase shift of the soliton individual central wavelength induced by the amplified spontaneous emission noise of the amplifiers. Very good agreement has been obtained between our theory and the reported experimental results.  相似文献   

4.
A performance analysis is carried out to evaluate the effect of cross-phase modulation (XPM) on a dispersion-managed 20 Gb/s optical wavelength-division multiplexing (WDM) transmission system using either the on-off keying (OOK) or the different-phase-shifting keying (DPSK) modulation, in the presence of the group-velocity dispersion (GVD), self-phase modulation (SPM), and amplified spontaneous emission (ASE). It is found that to achieve a bit error rate (BER) of 10−9 at a distance of 160 km, a 1.0 dB XPM power penalty is incurred for input channel power of 3 dBm in the OOK transmission and 7 dBm in the DPSK transmission. The power penalty increases with input channel powers and is inversely proportional and exhibits oscillations with respect to the channel separation. The oscillation is evenly spaced for the DPSK but not for the OOK and suggests the presence of optimum separation values. The XPM penalty decreases when a high dispersion fiber is used and increases linearly with increasing dispersion slope. Small residual dispersion can reduce the penalty of nonlinear effects.  相似文献   

5.
Jagjit Singh Malhotra 《Optik》2010,121(9):800-807
This paper presents the performance analysis of non-return-to-zero (NRZ), return-to-zero (RZ), chirped return-to-zero (CRZ) and carrier suppressed return-to-zero (CSRZ) data formats in optical soliton transmission link under the impact of chirp and third-order dispersion (TOD). The performance of these data formats has been analyzed on the basis of certain performance metrics, viz, bit error rate (BER), Q2 (dB), OSNR, eye opening, etc. It has been reported here that the performance of CRZ and CSRZ modulation format is better as compared to NRZ and RZ in a soliton transmission link. Further, CSRZ modulation format has been found to deliver optimum performance on the basis of performance evaluation metrics reported in this paper. In case of NRZ and CSRZ, comparatively narrow power spectrum has been observed. Best eye opening, highest value of Q2 (dB) of 18 dB and lowest value of BER of the order of 10−16 has been reported in case of CSRZ among the considered data formats. The results have been obtained by varying noise figure from 3.0 to 9.0. No considerable effect of noise was observed. It was observed that at very narrow and ultra short pulse width, OSNR value suffers heavily and reduced to even negative values in dB, thus inducing a high degree of OSNR power penalty. The results were obtained by varying chirp factor from −0.6 to +0.6. Negative chirp resulted in improved OSNR as compared to positive chirp. RZ data format yielded a broader optical spectrum, comparatively low spectral efficiency and poor OSNR thus it was found that RZ format is not suitable for optical soliton transmission under the impact of chirp and TOD.  相似文献   

6.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

7.
Manjit Singh  Ajay K. Sharma 《Optik》2010,121(7):665-672
We investigate the chirp selection of externally modulated RZ soliton pulse at 10 Gb/s for fiber optical communication systems for the reduction in timing jitter. We have chosen single arm Mach-Zehnder amplitude modulator with sin2 electrical shaped input-output (P-V) characteristic and its chirp range has been varied in the range of −5 to 5. The timing jitter, Q factor and bit error rate (BER) generated for the chirp range has been studied for various fiber lengths and post compensation has been demonstrated to reduce the timing jitter. The number of fixed output amplifiers after every 60 km span is varied from 2 to 10 and corresponding accumulated ASE noise has been studied to manage timing jitter and BER in permissible range, i.e. 5 ps and 10−9, respectively. It is observed that when two fiber spans are taken then the compensating fiber length for the system is less than 20 km for each case of the chirp considered. For 10 fiber spans, the compensating fiber length increases in the range 60-90 km depending upon the value of chirp taken. Finally it is shown that the chirp value of external modulator should be set to either 0 or −1 for externally modulated RZ soliton pulse in 10 Gb/s optical communication system which makes the system more insensitive to the timing jitter and the selection of dispersion compensating fiber length.  相似文献   

8.
为了研究非线性相位噪声对差分正交相移键控(DQPSK)调制系统性能的影响,在理论推导非线性相位噪声数学模型的基础上,通过固定接收端信噪比不变,仿真分析了40Gb/s速率时DQPSK调制系统误码率随输入信噪比的变化情况。结果表明:与二进制差分相移键控(DPSK)调制相比,DQPSK调制对非线性相位噪声的影响更为敏感,当非线性效应较大时,非线性相位噪声将使系统误码率显著增大,严重影响系统通信质量。因此,当采用DQPSK调制时,必须考虑非线性相位噪声对系统性能的影响。  相似文献   

9.
Strong atmospheric turbulence is a major hindrance in wireless optical communication systems. In this paper, the performance of a wireless optical communication system is analyzed using different modulation formats such as, binary phase shift keying-subcarrier intensity modulation (BPSK-SIM), differential phase shift keying (DPSK), differential phase shift keying-subcarrier intensity modulation (DPSK-SIM), M-ary pulse position modulation (M-PPM) and polarization shift keying (PolSK). The atmospheric channel is modeled for strong atmospheric turbulences with combined effect of turbulence and pointing errors. Novel closed-form analytical expressions for average bit error rate (BER), channel capacity and outage probability for the various modulation techniques, viz. BPSK-SIM, DPSK, DPSK-SIM, PolSK and M-PPM are derived. The simulated results for BER, channel capacity and outage probability of various modulation techniques are plotted and analyzed.  相似文献   

10.
Le Nguyen Binh   《Optics Communications》2008,281(19):4862-4869
The transmission of 40 Gb/s wavelength multiplexed channels under vestigial single side band modulation format is transmitted over long haul optically amplified fiber systems. Bit-error-rate (BER) of 10−12 or better can be achieved across all channels. Optical filters are designed with asymmetric roll-off bands. Simulations of the transmission performance, BER versus receiver sensitivity are demonstrated with wavelength channel spacing of 20–40 GHz. An optical filter, whose passband is 28 GHz and 20 dB cut-off band, performs best for 40 Gb/s bit rate due to optimum filtering and minimum noise contribution. Furthermore the single-sideband property of VSB format can assist linear equalization by electronic processing. The transmission performance is accurately evaluated based on the eye opening using a fast statistical method based on an equivalent Gaussian probability density distribution (pdf) which is derived from multiple peaks pdf of distorted eye diagram.  相似文献   

11.
A detailed theoretical analysis is presented to evaluate the combined influence of self-phase modulation (SPM) and group velocity dispersion (GVD) of optical fiber on the bit error rate (BER) performance of a heterodyne optical CPFSK system. The power penalty suffered by the system due to the combined influence of GVD and SPM is evaluated from the BER performance results. It is found that the penalty due to SPM at a BER of 10−9 is significant when the input power exceeds 7 dBm. Further, the CPFSK system with modulation index of 0.5 is less sensitive to the effects of GVD and SPM compared to the system with a modulation index of 1. The theoretical results are in conformity with the experimental results reported earlier.  相似文献   

12.
In this paper, the performance evaluation of path-averaged soliton transmission link for various performance measures viz. OSNR, optical power, extinction ratio, bit error rate (BER) and Q factor at different levels of noise figure and values of pulse width (FWHM) has been carried out. The performance of soliton transmission link is studied, taking into account soliton interaction, amplified spontaneous emission (ASE) noise and noise figure. The model presented considers interaction in a random sequence of solitons and the effect of the ASE noise added in each amplification stage. The influence of ASE noise, noise figure and pulse width with different amplifier spacing on the BER and quality factor has been investigated. It has been shown that these play dominant roles in degrading the performance measures. We have demonstrated the capability of path-averaged (guiding-centre) soliton for a long-haul distance of 17,000 km at a bit rate of 10 Gbps without ASE effect and noise figure in each amplifier span length of 500 km. The average value of quality factor is found to be 16.6 dB and the average BER is of the order of 10−12 over the transmission distance of 17,000 km. Further, it has been investigated that a severe system penalty results on the inclusion of ASE effect and noise figure in order to achieve the same level of performance. Thus, the investigations ascertain that in order to maintain the same level of BER and Q factor, the amplifier spacing and total transmission distance reduce considerably.  相似文献   

13.
The variational method is employed to describe the basic properties of soliton parameters and to evaluate the timing jitter by considering multi-perturbations in wavelength-division-multiplexing (WDM) dispersion-managed soliton (DMS) system. The bit error rates (BER) of different dispersion managed systems, which induced by the timing jitter are given and compared. From that, there exist optimizations for the design of high-speed and long-distance practical WDM soliton system.  相似文献   

14.
Bindiya Jain 《Optik》2010,121(21):1948-1954
This paper reports the effects of pre- and post-compensation using CRZ modulation format in long-haul WDM optical transmission link using wavelengths in three bandwidths viz. 1537.4; 1550; 1562.6 nm at per channel bit rates of 10 Gbit/s. It has been investigated here that optimization of dispersion map results in improved management of nonlinear effects in long-haul light wave systems operating in the quasi-linear regime. In addition, pre- and post-dispersion compensation was applied at the transmitter and receiver depending on the signal wavelength, which resulted in improvement of performance metrics viz. Q2 (dB), BER and OSNR over longer transmission distances. It is reported here that optimum values of Q2 dB of 17.1 dB, BER of 8.4933e−015 and OSNR of 30.1 dB are obtained at 1550 nm at a transmission distance of 7360 km with pre- and post-compensation using CRZ modulation format.  相似文献   

15.
杨祥林  陈健 《物理学报》1993,42(1):51-57
在采用周期性能量补偿的全光孤子通讯系统中,比特率距离积受到孤子脉冲到达时间的Gordon-Haus效应的限制。本文讨论有损光纤中微扰对孤子群速度偏移的影响,分析集中式和分布式能量补偿方式下,增益噪声引起的孤子到达时间抖动,并由此得出系统的极限比特率距离积的大小。分析结果表明:在实际系统中,分布式能量补偿方式下系统极限比特率距离积一般要比集中式能量补偿方式下的高出一倍以上。 关键词:  相似文献   

16.
Simranjit Singh  R.S. Kaler 《Optik》2012,123(24):2199-2203
In this paper, we investigated the performance of multi terabits DWDM system consisting of hybrid optical amplifier RAMAN-EDFA for different data format such as non-return to zero (NRZ), return to zero (RZ) and differential phase shift keying (DPSK). We find that in 64 × 10 and 96 × 10 Gbps, RZ is more adversely affected by nonlinearities, where as NRZ and DPSK is more affected by dispersion. We further show that RZ provide good quality factor (13.88 dB and 15.93 dB for 64 and 96 channels), less eye closure (2.609 dB and 3.191 dB for 64 and 96 channels) and acceptable bit error rate (3.89 × 108 and 1.24 × 109 for 64 and 96 channels) at the respective distance as compare to other existing modulation format. We further investigated the maximum single span distance covered by using existing data formats.  相似文献   

17.
徐铭  吉建华 《光学学报》2007,27(5):81-786
差分相移键控(DPSK)调制方式和色散管理孤子传输方式的结合能抵制噪声和非线性损伤,在高速(40 Gbit/s以上)多信道系统中具有突出的优点。采用变分法分析了多波长信道的放大自发辐射(ASE)噪声、信号间的非线性串扰(ISI)等多种扰动因素引起差分相移键控色散管理孤子系统的均方根相位抖动,给出了扰动的作用区域以及各扰动的大小。研究发现,放大自发辐射引起的抖动与传输距离成三次方的关系,而交叉相位调制(XPM)引起的抖动与距离近似成线性关系。通过优化选择色散管理图强度范围1.5~3.5,各种扰动得到了抑制,而以放大自发辐射扰动抑制为最大,此时要远低于交叉相位调制引起的抖动,然后分别是交叉相位调制-放大自发辐射扰动和交叉相位调制,从而波分复用系统主要来自于增加信道数这一客观限制。  相似文献   

18.
Anu Sheetal  Ajay K. Sharma 《Optik》2009,120(14):704-709
We investigate the impact of extinction ratio of single arm sin2 LiNbO3 Mach-Zehnder (MZ) amplitude modulator on the performance of 10 and 20 Gb/s single-channel optical communication system. For different fiber lengths, the system performance has been analyzed with the increase in the extinction ratio. The effect of variation in dispersion parameter has also been illustrated. The impact of extinction ratio (ζ), dispersion parameter and length of the fiber has been further optimized with minimum bit error rate (BER) at optimal decision threshold (10−9) for 10 and 20 Gb/s bit rate. It is found that the system gives optimum performance at extinction ratio (ζ) value 20 dB. The increase in the transmission distance from 468 km for 10 Gb/s to 532 km for 20 Gb/s has been reported, and 8 dB improvement in the Q value has been observed as the value of ζ is increased from 10 to 20 dB. At 20 Gb/s, the system gives optimum performance for dispersion parameter value only up to 4 ps/nm km; however, at 10 Gb/s the system can operate for dispersion values up to 14.3 ps/nm km. Further we investigate the self-phase modulation (SPM) effect for the increase in the input power. It is observed that the SPM effect is negligible below 3 dB m input power and it increases at higher power levels.  相似文献   

19.
We propose a novel advanced orthogonal modulation format dark return-to-zero frequency shift keying/differential phase shift keying (DRZ-FSK/DPSK) and its realization scheme. The DRZ-FSK/DPSK is generated by the combination of a 40-Gb/s return-to-zero (RZ) signal and a DRZ signal which is converted from the RZ using a semiconductor optical amplifier (SOA) based on nonlinear cross polarization rotation (XPR) and then re-modulated by high-bit-rate DPSK at 40 Gb/s. The feasibility of the scheme is exper-imentally demonstrated. Bit error rate (BER) results of the total 80-Gb/s DRZ-FSK/DPSK orthogonal modulation signal with a subsequent 100-km single-mode fiber (SMF) transmission link show its potential for future high-speed long-haul optical communication.  相似文献   

20.
We have introduced and comprehensively analyzed a novel scheme of simultaneous demodulation and dispersion compensation of wavelength division multiplexed (WDM) non-return-to zero (NRZ) differential phase shift keying (DPSK) optical link using an optical ring resonator (ORR) based filter. Using extensive numerical simulation we have demonstrated the transmission of 10.7 Gb/s WDM DPSK channels having 50 GHz and 100 GHz spacing over 400 km of unrepeatered reach at 20 dB optical-signal-to-noise-ratio (OSNR) to achieve a bit error rate (BER) of 10? 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号