共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》2020,384(35):126881
Recently, the explosive synchronization (ES) has attracted great interests. Motivated by the recent dynamic framework of complex network, we focus on the network of mobile oscillators and study synchronization phenomenon. The local synchronous order parameter of the neighbors of the oscillator is used as the controllable variable to adjust the coupling strength of the oscillator. Hence, it can be seen as a kind of adaptive strategy. By numerical simulation, we find that ES can be observed in the dynamic network of mobile oscillators, accompanying with hysteresis loop, as the coupling strength increases gradually. It is found that the critical value of coupling strength and hysteresis loop width is affected by the natural frequency distribution and the number of neighbors the oscillator owning. It can be deduced that ES will be motivated by increasing the number of oscillators in the network. Meanwhile, our results are feasible to different natural frequency distributions, such as Lorentzian, Gaussian power-law, and Rayleigh distribution, whether it is symmetric or not. 相似文献
2.
The biased link occupation rule in the Achlioptas process (AP) discourages the large clusters from growing much ahead of others and encourages faster growth of clusters which lag behind. In this paper we propose a model where this tendency is sharply reflected in the Gamma distribution of the cluster sizes, unlike the power law distribution in AP. In this model single edges between pairs of clusters of sizes si and sj are occupied with a probability ∝(sisj)α. The parameter α is continuously tunable over the entire real axis. Numerical studies indicate that for α<αc the transition is first order, αc=0 for a square lattice and αc=−1/2 for random graphs. In the limits of α=−∞,+∞ this model coincides with models well established in the literature. 相似文献
3.
Umesh Kumar Verma Amit Sharma Neeraj Kumar Kamal Manish Dev Shrimali 《Physics letters. A》2018,382(32):2122-2126
The emergence of dynamical abrupt transitions for the first time in an ensemble of identical limit-cycle and chaotic oscillators coupled via a common environment is reported. The transition from the oscillatory state to the death state and vice versa, in these networks of oscillators are found not only discontinuous as well as irreversible in the parameter space. This first order phase transition in these systems is termed as Explosive Death. The occurrence of such transition is studied in details by using an appropriate order parameter for both limit-cycle and chaotic oscillators, in particular, Stuart–Landau and Rössler oscillators. The backward transition point for this phenomenon is obtained analytically using linear stability analysis and is found to be consistent with the numerical results. 相似文献
4.
Recent studies have shown that explosive synchronization transitions can be observed in networks of phase oscillators [Gómez-Garden es J,Gómez S,Arenas A and Moreno Y 2011 Phys.Rev.Lett.106 128701] and chaotic oscillators [Leyva I,Sevilla-Escoboza R,BuldúJ M,Sendin a-Nadal I,Gómez-Garden es J,Arenas A,Moreno Y,Gómez S,Jaimes-Reátegui R and Boccaletti S 2012 Phys.Rev.Lett.108 168702].Here,we study the effect of different chaotic dynamics on the synchronization transitions in small world networks and scale free networks.The continuous transition is discovered for Rssler systems in both of the above complex networks.However,explosive transitions take place for the coupled Lorenz systems,and the main reason is the abrupt change of dynamics before achieving complete synchronization.Our results show that the explosive synchronization transitions are accompanied by the change of system dynamics. 相似文献
5.
This paper is concerned with the problem of global synchronization for a class of dynamical complex networks composed of general Lur’e systems. Based on the absolute stability theory and the Kalman-Yakubovich-Popov (KYP) lemma, sufficient conditions are established to guarantee global synchronization of dynamical networks with complex topology, directed and weighted couplings. Several global synchronization criteria formulated in the form of linear matrix inequalities (LMIs) or frequency-domain inequalities are also proposed for undirected dynamical networks. In order to obtain global results, no linearization technique is involved through derivation of the synchronization criteria. Numerical examples are provided to demonstrate the effectiveness of the proposed results. 相似文献
6.
In this Letter, the function projective synchronization in the drive-response dynamical network is investigated, where the response dynamical network is affected not only by the drive system, but also coupled via a linearly feedback scheme. Based on Lyapunov stability theory, it is shown that the function projective synchronization with desired scaling function can be realized in the drive-response dynamical network by a simple control law. Moreover it is no need for the scaling function to be differentiable, bounded and nonzero all the time. The numerical simulations are provided to verify the theoretical result. 相似文献
7.
This paper investigates adaptive synchronization for dynamical networks of neutral type with time-delay. In comparison with those of the existing synchronization of dynamical networks of neutral type with time-delay, we assume that the given neutral type expression can be linear function, nonlinear function, or even any elementary transformation. Based on the Lyapunov stability theorem, the adaptive control law is derived to make the state of two dynamical networks of neutral type synchronized. Some numerical are also given to show the effectiveness of the proposed method. 相似文献
8.
Synchronization is a widespread phenomenon in both synthetic and real-world networks. This collective behavior of simple and complex systems has been attracting much research during the last decades. Two different routes to synchrony are defined in networks; first-order, characterized as explosive, and second-order, characterized as continuous transition. Although pioneer researches explained that the transition type is a generic feature in the networks, recent studies proposed some frameworks in which different phase and even chaotic oscillators exhibit explosive synchronization. The relationship between the structural properties of the network and the dynamical features of the oscillators is mainly proclaimed because some of these frameworks show abrupt transitions. Despite different theoretical analyses about the appearance of the first-order transition, studies are limited to the mean-field theory, which cannot be generalized to all networks. There are different real-world and man-made networks whose properties can be characterized in terms of explosive synchronization, e.g., the transition from unconsciousness to wakefulness in the brain and spontaneous synchronization of power-grid networks. In this review article, explosive synchronization is discussed from two main aspects. First, pioneer articles are categorized from the dynamical-structural framework point of view. Then, articles that considered different oscillators in the explosive synchronization frameworks are studied. In this article, the main focus is on the explosive synchronization in networks with chaotic and neuronal oscillators. Also, efforts have been made to consider the recent articles which proposed new frameworks of explosive synchronization. 相似文献
9.
In this paper, we investigate the non-equilibrium dynamical phases of the two-atom Dicke model, which can be realized in a two species Bose–Einstein condensate interacting with a single light mode in an optical cavity. Apart from the usual non-equilibrium normal and inverted phases, a non-equilibrium mixed phase is possible which is a combination of normal and inverted phase. A new kind of dynamical phase transition is predicted from non-superradiant mixed phase to the superradiant phase which can be achieved by tuning the two different atom–photon couplings. We also show that a dynamical phase transition from the non-superradiant mixed phase to the superradiant phase is forbidden for certain values of the two atom–photon coupling strengths. 相似文献
10.
Cluster synchronization of complex dynamical networks with fractional-order dynamical nodes is discussed in the Letter. By using the stability theory of fractional-order differential system and linear pinning control, a sufficient condition for the stability of the synchronization behavior in complex networks with fractional order dynamics is derived. Only the nodes in one community which have direct connections to the nodes in other communities are needed to be controlled, resulting in reduced control cost. A numerical example is presented to demonstrate the validity and feasibility of the obtained result. Numerical simulations illustrate that cluster synchronization performance for fractional-order complex dynamical networks is influenced by inner-coupling matrix, control gain, coupling strength and topological structures of the networks. 相似文献
11.
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results. 相似文献
12.
13.
In this Letter, we investigate the problem of impulsive synchronization of networked multi-agent systems, where each agent can be modeled as an identical nonlinear dynamical system. Firstly, an impulsive control protocol is designed for network with fixed topology based on the local information of agents. Then sufficient conditions are given to guarantee the synchronization of the networked nonlinear dynamical system by using algebraic graph theory and impulsive control theory. Furthermore, how to select the discrete instants and impulsive constants is discussed. The case that the topologies of the networks are switching is also considered. Numerical simulations show the effectiveness of our theoretical results. 相似文献
14.
Synchronization of general complex dynamical networks with fractional-order dynamical nodes is addressed in this paper. Based on the stability theory of fractional-order differential systems and adaptive pinning control, some sufficient local asymptotical synchronization criteria and global asymptotical ones are derived respectively, which succeed in solving the problem about how many nodes are need to be controlled and how much coupling strength should be applied to ensure the synchronization of the entire fractional-order networks. The obtained results are more general and effective than those reported. Moreover, the coupling-configuration matrices and the inner-coupling matrices are not assumed to be symmetric and irreducible. Finally, a numerical simulation is presented to demonstrate the validity and feasibility of the proposed synchronization criteria. 相似文献
15.
16.
This Letter investigates generalized function synchronization of continuous and discrete complex networks by impulsive control. By constructing the reasonable corresponding impulsively controlled response networks, some criteria and corollaries are derived for the generalized function synchronization between the impulsively controlled complex networks, continuous and discrete networks are both included. Furthermore, the generalized linear synchronization and nonlinear synchronization are respectively illustrated by several examples. All the numerical simulations demonstrate the correctness of the theoretical results. 相似文献
17.
This paper investigates generalized synchronization of three typical classes of complex dynamical networks: scale-free networks, small-world networks, and interpolating networks. The proposed synchronization strategy is to adjust adaptively a node’s coupling strength based on the node’s local generalized synchronization information. By taking the auxiliary-system approach and using the Lyapunov function method, we prove that for any given initial coupling strengths, the generalized synchronization can take place in complex networks consisting of nonidentical dynamical systems. It is demonstrated that the coupling strengths are affected by topologies of the networks. Furthermore, it is found that there are hierarchical features in the processes of generalized synchronization in scale-free networks because of their highly heterogeneous distributions of connection degree. Finally, we discuss in detail how a network’s degree of heterogeneity affects its generalization synchronization behavior. 相似文献
18.
Transition to complete synchronization via near-synchronization in two coupled chaotic neurons 下载免费PDF全文
The synchronization transition in two coupled chaotic Morris-Lecar (ML) neurons with gap junction is studied with the coupling strength increasing. The conditional Lyapunov exponents, along with the synchronization errors are calculated to diagnose synchronization of two coupled chaotic ML neurons. As a result, it is shown that the increase in the coupling strength leads to incoherence, then induces a transition process consisting of three different synchronization states in succession, namely, burst synchronization, near-synchronization and embedded burst synchronization, and achieves complete synchronization of two coupled neurons finally. These sequential transitions to synchronization reveal a new transition route from incoherence to complete synchronization in coupled systems with multi-time scales. 相似文献
19.