首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we show that a convexifiability property of nonconvex quadratic programs with nonnegative variables and quadratic constraints guarantees zero duality gap between the quadratic programs and their semi-Lagrangian duals. More importantly, we establish that this convexifiability is hidden in classes of nonnegative homogeneous quadratic programs and discrete quadratic programs, such as mixed integer quadratic programs, revealing zero duality gaps. As an application, we prove that robust counterparts of uncertain mixed integer quadratic programs with objective data uncertainty enjoy zero duality gaps under suitable conditions. Various sufficient conditions for convexifiability are also given.  相似文献   

2.
In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the linear conic program, and an extension to complementarity constraints are established, and computational issues are discussed. Research partially supported by NSF Grant CCF-0545514.  相似文献   

3.
This paper presents an approximate affinely adjustable robust counterpart for conic quadratic constraints. The theory is applied to obtain robust solutions to the problems of subway route design with implementation errors and a supply chain management with uncertain demands. Comparison of the adjustable solutions with the nominal and non-adjustable robust solutions shows that the adjustable (dynamic) robust solution maintains feasibility for all possible realizations, while being less conservative than the usual (static) robust counterpart solution.  相似文献   

4.
Copositive optimization problems are particular conic programs: optimize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone from within, we propose a method which approximates this cone from outside. This is achieved by passing to the dual problem, where the feasible set is an affine subspace intersected with the cone of completely positive matrices, and this cone is approximated from within. We consider feasible descent directions in the completely positive cone, and regularized strictly convex subproblems. In essence, we replace the intractable completely positive cone with a nonnegative cone, at the cost of a series of nonconvex quadratic subproblems. Proper adjustment of the regularization parameter results in short steps for the nonconvex quadratic programs. This suggests to approximate their solution by standard linearization techniques. Preliminary numerical results on three different classes of test problems are quite promising.  相似文献   

5.
In this paper, we consider a particular form of inequalities which involves product of multiple variables with rational exponents. These inequalities can equivalently be represented by a number of conic quadratic forms called cone constraints. We propose an integer programming model and a heuristic algorithm to obtain the minimum number of cone constraints which equivalently represent the original inequality. The performance of the proposed algorithm and the computational effect of reformulations are numerically illustrated.  相似文献   

6.
The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated S-lemma. In this paper, we show that when the quadratic forms are simultaneously diagonalizable (SD), it is possible to derive an equivalent convex problem, which is a conic quadratic (CQ) one, and as such is significantly more tractable than a semidefinite problem. The SD condition holds for free for many problems arising in applications, in particular, when deriving robust counterparts of quadratic, or conic quadratic, constraints affected by implementation error. The proof of the hidden CQ property is constructive and does not rely on the S-lemma. This fact may be significant in discovering hidden convexity in some nonquadratic problems.  相似文献   

7.
X. Q. Yang  K. W. Meng 《TOP》2014,22(1):31-37
In these comments on the excellent survey by Dinh and Jeyakumar, we briefly discuss some recently developed topics and results on applications of extended Farkas’ lemma(s) and related qualification conditions to problems of variational analysis and optimization, which are not fully reflected in the survey. They mainly concern: Lipschitzian stability of feasible solution maps for parameterized semi-infinite and infinite programs with linear and convex inequality constraints indexed by arbitrary sets; optimality conditions for nonsmooth problems involving such constraints; evaluating various subdifferentials of optimal value functions in DC and bilevel infinite programs with applications to Lipschitz continuity of value functions and optimality conditions; calculating and estimating normal cones to feasible solution sets for nonlinear smooth as well as nonsmooth semi-infinite, infinite, and conic programs with deriving necessary optimality conditions for them; calculating coderivatives of normal cone mappings for convex polyhedra in finite and infinite dimensions with applications to robust stability of parameterized variational inequalities. We also give some historical comments on the original Farkas’ papers.  相似文献   

8.
This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an \(\epsilon \)-optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.  相似文献   

9.
Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested procedure to construct a function that characterizes feasibility over right-hand sides and can determine which statement in a theorem of the alternative holds.  相似文献   

10.
V. Jeyakumar  G. Li 《Positivity》2011,15(2):331-342
We present a robust Farkas lemma, which provides a new generalization of the celebrated Farkas lemma for linear inequality systems to uncertain conical linear systems. We also characterize the robust Farkas lemma in terms of a generalized characteristic cone. As an application of the robust Farkas lemma we establish a characterization of uncertainty-immunized solutions of conical linear programming problems under uncertainty.  相似文献   

11.
Various conic relaxations of quadratic optimization problems in nonnegative variables for combinatorial optimization problems, such as the binary integer quadratic problem, quadratic assignment problem (QAP), and maximum stable set problem have been proposed over the years. The binary and complementarity conditions of the combinatorial optimization problems can be expressed in several ways, each of which results in different conic relaxations. For the completely positive, doubly nonnegative and semidefinite relaxations of the combinatorial optimization problems, we discuss the equivalences and differences among the relaxations by investigating the feasible regions obtained from different representations of the combinatorial condition which we propose as a generalization of the binary and complementarity condition. We also study theoretically the issue of the primal and dual nondegeneracy, the existence of an interior solution and the size of the relaxations, as a result of different representations of the combinatorial condition. These characteristics of the conic relaxations affect the numerical efficiency and stability of the solver used to solve them. We illustrate the theoretical results with numerical experiments on QAP instances solved by SDPT3, SDPNAL+ and the bisection and projection method.  相似文献   

12.
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dual, the cone of copositive matrices. As a result of this reformulation approach, novel solution schemes for quadratic polynomial optimization problems have been designed by drawing on conic programming tools, and the extensively studied cones of completely positive and of copositive matrices. In particular, this approach has been applied to solve key combinatorial optimization problems. Along this line of research, we consider polynomial optimization problems that are not necessarily quadratic. For this purpose, we use a natural extension of the cone of completely positive matrices; namely, the cone of completely positive tensors. We provide a general characterization of the class of polynomial optimization problems that can be formulated as a conic program over the cone of completely positive tensors. As a consequence of this characterization, it follows that recent related results for quadratic problems can be further strengthened and generalized to higher order polynomial optimization problems. Also, we show that the conditions underlying the characterization are conceptually the same, regardless of the degree of the polynomials defining the problem. To illustrate our results, we discuss in further detail special and relevant instances of polynomial optimization problems.  相似文献   

13.
Detecting infeasibility in conic optimization and providing certificates for infeasibility pose a bigger challenge than in the linear case due to the lack of strong duality. In this paper we generalize the approximate Farkas lemma of Todd and Ye (Math Program 81:1–22, 1998) from the linear to the general conic setting, and use it to propose stopping criteria for interior point algorithms using self-dual embedding. The new criteria can identify if the solutions have large norm, thus they give an indication of infeasibility. The modified algorithms enjoy the same complexity bounds as the original ones, without assuming that the problem is feasible. Issues about the practical application of the criteria are also discussed. The authors were supported by the Canada Research Chairs program, NSERC Discovery Grant #5-48923 and MITACS.  相似文献   

14.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

15.
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.  相似文献   

16.
Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of optimization is impressive, since problem classes both in the continuous and discrete world, as well as both deterministic and stochastic models are covered. Copositivity appears in local and global optimality conditions for quadratic optimization, but can also yield tighter bounds for NP-hard combinatorial optimization problems. Here some of the recent success stories are told, along with principles, algorithms and applications.  相似文献   

17.
We describe a polynomial-size conic quadratic reformulation for a machine-job assignment problem with separable convex cost. Because the conic strengthening is based only on the objective of the problem, it can also be applied to other problems with similar cost functions. Computational results demonstrate the effectiveness of the conic reformulation.  相似文献   

18.

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family implicitly induces a convex underestimator of the objective function on the feasible region of the quadratic program. This alternative perspective on convex relaxations enables us to establish several useful properties of the corresponding convex underestimators. In particular, if the recession cone of the feasible region of the quadratic program does not contain any directions of negative curvature, we show that the convex underestimator arising from the copositive relaxation is precisely the convex envelope of the objective function of the quadratic program, strengthening Burer’s well-known result on the exactness of the copositive relaxation in the case of nonconvex quadratic programs. We also present an algorithmic recipe for constructing instances of quadratic programs with a finite optimal value but an unbounded relaxation for a rather large family of convex relaxations including the doubly nonnegative relaxation.

  相似文献   

19.
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability. This research has been supported, in part, by Grant # DMI0700203 from the National Science Foundation.  相似文献   

20.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号