首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Optimization》2012,61(5):713-733
This article develops the deterministic approach to duality for semi-definite linear programming problems in the face of data uncertainty. We establish strong duality between the robust counterpart of an uncertain semi-definite linear programming model problem and the optimistic counterpart of its uncertain dual. We prove that strong duality between the deterministic counterparts holds under a characteristic cone condition. We also show that the characteristic cone condition is also necessary for the validity of strong duality for every linear objective function of the original model problem. In addition, we derive that a robust Slater condition alone ensures strong duality for uncertain semi-definite linear programs under spectral norm uncertainty and show, in this case, that the optimistic counterpart is also computationally tractable.  相似文献   

2.
本文研究了具有强健性的证券投资组合优化问题.模型以最差条件在值风险为风险度量方法,并且考虑了交易费用对收益的影响.当投资组合的收益率概率分布不能准确确定但是在有界的区间内,尤其是在箱型区间结构和椭球区域结构内时,我们可以把具有强健性的证券投资组合优化问题的模型分别转化成线性规划和二阶锥规划形式.最后,我们用一个真实市场数据的算例来验证此方法.  相似文献   

3.
We develop a duality theory for minimax fractional programming problems in the face of data uncertainty both in the objective and constraints. Following the framework of robust optimization, we establish strong duality between the robust counterpart of an uncertain minimax convex–concave fractional program, termed as robust minimax fractional program, and the optimistic counterpart of its uncertain conventional dual program, called optimistic dual. In the case of a robust minimax linear fractional program with scenario uncertainty in the numerator of the objective function, we show that the optimistic dual is a simple linear program when the constraint uncertainty is expressed as bounded intervals. We also show that the dual can be reformulated as a second-order cone programming problem when the constraint uncertainty is given by ellipsoids. In these cases, the optimistic dual problems are computationally tractable and their solutions can be validated in polynomial time. We further show that, for robust minimax linear fractional programs with interval uncertainty, the conventional dual of its robust counterpart and the optimistic dual are equivalent.  相似文献   

4.
本文提出了一类新的构造0-1多项式规划的半定规划(SDP)松弛方法. 我们首先利用矩阵分解和分片线性逼近给出一种新的SDP松弛, 该 松弛产生的界比标准线性松弛产生的界更紧. 我们还利用 拉格朗日松弛和平方和(SOS)松弛方法给出了一种构造Lasserre的SDP 松弛的新方法.  相似文献   

5.
It is proved a sufficient condition that the optimal value of a linear program be a continuous function of the coefficients. The condition isessential, in the sense that, if it is not imposed, then examples with discontinuous optimal-value function may be found. It is shown that certain classes of linear programs important in applications satisfy this condition. Using the relation between parametric linear programming and the distribution problem in stochastic programming, a necessary and sufficient condition is given that such a program has optimal value. Stable stochastic linear programs are introduced, and a sufficient condition of such stability, important in computation problems, is established.This note is a slightly modified version of a paper presented at the Institute of Econometrics and Operations Research of the University of Bonn, Bonn, Germany, 1972.The author is grateful to G. B. Dantzig and S. Karamardian for useful comments on an earlier draft of this paper. In particular, S. Karamardian proposed modifications which made clearer the proof of Lemma 2.1.  相似文献   

6.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

7.
We consider a finite state-action discounted constrained Markov decision process with uncertain running costs and known transition probabilities. We propose equivalent linear programming, second-order cone programming and semidefinite programming problems for the robust constrained Markov decision processes when the uncertain running cost vectors belong to polytopic, ellipsoidal, and semidefinite cone uncertainty sets, respectively. As an application, we study a variant of a machine replacement problem and perform numerical experiments on randomly generated instances of various sizes.  相似文献   

8.
In this paper, we consider the following minimax linear programming problem: min z = max1 ≤ jn{CjXj}, subject to Ax = g, x ≥ 0. It is well known that this problem can be transformed into a linear program by introducing n additional constraints. We note that these additional constraints can be considered implicitly by treating them as parametric upper bounds. Based on this approach we develop two algorithms: a parametric algorithm and a primal—dual algorithm. The parametric algorithm solves a linear programming problem with parametric upper bounds and the primal—dual algorithm solves a sequence of related dual feasible linear programming problems. Computation results are also presented, which indicate that both the algorithms are substantially faster than the simplex algorithm applied to the enlarged linear programming problem.  相似文献   

9.
参数凸二次规划的线性稳定性   总被引:2,自引:0,他引:2  
本文研究参数凸二次规划的最优解集的稳定性。首先给出参数数学规划的方向线性稳定的定义,然后利用集值映射的微分理论证明线性约束参数凸二次规划是线性稳定的。  相似文献   

10.
Lovász and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for 0/1 linear programming problems. We revisit these two constructions and propose two new, block-diagonal hierarchies, which are at least as strong as the Lovász-Schrijver hierarchy, but less costly to compute. We report experimental results for the stable set problem of Paley graphs.  相似文献   

11.
Generalized disjunctive programming (GDP), originally developed by Raman and Grossmann (1994), is an extension of the well-known disjunctive programming paradigm developed by Balas in the mid 70s in his seminal technical report (Balas, 1974). This mathematical representation of discrete-continuous optimization problems, which represents an alternative to the mixed-integer program (MIP), led to the development of customized algorithms that successfully exploited the underlying logical structure of the problem. The underlying theory of these methods, however, borrowed only in a limited way from the theories of disjunctive programming, and the unique insights from Balas’ work have not been fully exploited.In this paper, we establish new connections between the fields of disjunctive programming and generalized disjunctive programming for the linear case. We then propose a novel hierarchy of relaxations to the original linear GDP model that subsumes known relaxations for this model, and show that a subset of these relaxations are tighter than the latter. We discuss the usefulness of these relaxations within the context of MIP and illustrate these results on the classic strip-packing problem.  相似文献   

12.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

13.
The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having extra linear constraints. This paper shows that two useful and powerful features of the classical trust-region problem continue to hold for an extended trust-region problem with linear inequality constraints under a new dimension condition. First, we establish that the class of extended trust-region problems has an exact SDP-relaxation, which holds without the Slater constraint qualification. This is achieved by proving that a system of quadratic and affine functions involved in the model satisfies a range-convexity whenever the dimension condition is fulfilled. Second, we show that the dimension condition together with the Slater condition ensures that a set of combined first and second-order Lagrange multiplier conditions is necessary and sufficient for global optimality of the extended trust-region problem and consequently for strong duality. Through simple examples we also provide an insightful account of our development from SDP-relaxation to strong duality. Finally, we show that the dimension condition is easily satisfied for the extended trust-region model that arises from the reformulation of a robust least squares problem (LSP) as well as a robust second order cone programming model problem (SOCP) as an equivalent semi-definite linear programming problem. This leads us to conclude that, under mild assumptions, solving a robust LSP or SOCP under matrix-norm uncertainty or polyhedral uncertainty is equivalent to solving a semi-definite linear programming problem and so, their solutions can be validated in polynomial time.  相似文献   

14.
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.  相似文献   

15.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

16.
不确定信息多目标线性优化的鲁棒方法   总被引:1,自引:0,他引:1  
研究不确定信息的多目标线性优化问题,其数据不能精确给出但是属于一个给定的集合.首先,采用鲁棒方法把该问题转化为一个确定的多目标优化问题.然后,给出此问题解存在的充分条件.最后,通过实例验证了用鲁棒方法解决不确定信息的多目标线性优化问题的有效性.  相似文献   

17.
Linear stochastic programming problems with first order stochastic dominance (FSD) constraints are non-convex. For their mixed 0-1 linear programming formulation we present two convex relaxations based on second order stochastic dominance (SSD). We develop necessary and sufficient conditions for FSD, used to obtain a disjunctive programming formulation and to strengthen one of the SSD-based relaxations.  相似文献   

18.
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of the relaxations increases as the number of conjuncts decreases, leading to a hierarchy of relaxations. We prove that the tightest of these relaxations, allows in theory the solution of the disjunctive convex program as a nonlinear programming problem. We present a methodology to guide the generation of strong relaxations without incurring an exponential increase of the size of the reformulated mixed-integer program. Finally, we apply the theory developed to improve the computational efficiency of solution methods for nonlinear convex generalized disjunctive programs (GDP). This methodology is validated through a set of numerical examples.  相似文献   

19.
We propose a cutting plane algorithm for mixed 0–1 programs based on a family of polyhedra which strengthen the usual LP relaxation. We show how to generate a facet of a polyhedron in this family which is most violated by the current fractional point. This cut is found through the solution of a linear program that has about twice the size of the usual LP relaxation. A lifting step is used to reduce the size of the LP's needed to generate the cuts. An additional strengthening step suggested by Balas and Jeroslow is then applied. We report our computational experience with a preliminary version of the algorithm. This approach is related to the work of Balas on disjunctive programming, the matrix cone relaxations of Lovász and Schrijver and the hierarchy of relaxations of Sherali and Adams.The research underlying this report was supported by National Science Foundation Grant #DDM-8901495 and Office of Naval Research Contract N00014-85-K-0198.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号