首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider a jump diffusion process (Xt)t0(Xt)t0 observed at discrete times t=0,Δ,…,nΔt=0,Δ,,nΔ. The sampling interval ΔΔ tends to 0 and nΔnΔ tends to infinity. We assume that (Xt)t0(Xt)t0 is ergodic, strictly stationary and exponentially ββ-mixing. We use a penalised least-square approach to compute two adaptive estimators of the drift function bb. We provide bounds for the risks of the two estimators.  相似文献   

2.
On the basis of a random sample of size n on an m-dimensional random vector X, this note proposes a class of estimators fn(p) of f(p), where f is a density of X w.r.t. a σ-finite measure dominated by the Lebesgue measure on Rm, p = (p1,…,pm), pj ≥ 0, fixed integers, and for x = (x1,…,xm) in Rm, f(p)(x) = ?p1+…+pm f(x)/(?p1x1 … ?pmxm). Asymptotic unbiasedness as well as both almost sure and mean square consistencies of fn(p) are examined. Further, a necessary and sufficient condition for uniform asymptotic unbisedness or for uniform mean square consistency of fn(p) is given. Finally, applications of estimators of this note to certain statistical problems are pointed out.  相似文献   

3.
We investigate the problem of estimating the cumulative distribution function (c.d.f.) F of a distribution ν from the observation of one trajectory of the random walk in i.i.d. random environment with distribution ν on Z. We first estimate the moments of ν, then combine these moment estimators to obtain a collection of estimators (F?nM)M1 of F, our final estimator is chosen among this collection by Goldenshluger–Lepski’s method. This estimator is easily computable. We derive convergence rates for this estimator depending on the Hölder regularity of F and on the divergence rate of the walk. Our rate is minimal when the chain realizes a trade-off between a fast exploration of the sites, allowing to get more information and a larger number of visits of each site, allowing a better recovery of the environment itself.  相似文献   

4.
We study the following model of hidden Markov chain: with (Xi) a real-valued positive recurrent and stationary Markov chain, and (?i)1?i?n+1 a noise independent of the sequence (Xi) having a known distribution. We present an adaptive estimator of the transition density based on the quotient of a deconvolution estimator of the density of Xi and an estimator of the density of (Xi,Xi+1). These estimators are obtained by contrast minimization and model selection. We evaluate the L2 risk and its rate of convergence for ordinary smooth and supersmooth noise with regard to ordinary smooth and supersmooth chains. Some examples are also detailed.  相似文献   

5.
We consider NN independent stochastic processes (Xj(t),t∈[0,T])(Xj(t),t[0,T]), j=1,…,Nj=1,,N, defined by a one-dimensional stochastic differential equation with coefficients depending on a random variable ?j?j and study the nonparametric estimation of the density of the random effect ?j?j in two kinds of mixed models. A multiplicative random effect and an additive random effect are successively considered. In each case, we build kernel and deconvolution estimators and study their L2L2-risk. Asymptotic properties are evaluated as NN tends to infinity for fixed TT or for T=T(N)T=T(N) tending to infinity with NN. For T(N)=N2T(N)=N2, adaptive estimators are built. Estimators are implemented on simulated data for several examples.  相似文献   

6.
Local likelihood estimation for nonstationary random fields   总被引:3,自引:0,他引:3  
We develop a weighted local likelihood estimate for the parameters that govern the local spatial dependency of a locally stationary random field. The advantage of this local likelihood estimate is that it smoothly downweights the influence of faraway observations, works for irregular sampling locations, and when designed appropriately, can trade bias and variance for reducing estimation error. This paper starts with an exposition of our technique on the problem of estimating an unknown positive function when multiplied by a stationary random field. This example gives concrete evidence of the benefits of our local likelihood as compared to unweighted local likelihoods. We then discuss the difficult problem of estimating a bandwidth parameter that controls the amount of influence from distant observations. Finally we present a simulation experiment for estimating the local smoothness of a local Matérn random field when observing the field at random sampling locations in [0,1]2. The local Matérn is a fully nonstationary random field, has a closed form covariance, can attain any degree of differentiability or Hölder smoothness and behaves locally like a stationary Matérn. We include an appendix that proves the positive definiteness of this covariance function.  相似文献   

7.
A robust estimator of the regression function is proposed combining kernel methods as introduced for density estimation and robust location estimation techniques. Weak and strong consistency and asymptotic normality are shown under mild conditions on the kernel sequence. The asymptotic variance is a product from a factor depending only on the kernel and a factor similar to the asymptotic variance in robust estimation of location. The estimation is minimax robust in the sense of Huber (1964). Robust estimation of a location parameter. Ann. Math. Statist.33 73–101.  相似文献   

8.
In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider nn discrete time observations with step ΔΔ. The asymptotic framework is: nn tends to infinity, Δ=ΔnΔ=Δn tends to zero while nΔnnΔn tends to infinity. First, we use a Fourier approach (“frequency domain”): this allows us to construct an adaptive nonparametric estimator and to provide a bound for the global L2L2-risk. Second, we use a direct approach (“time domain”) which allows us to construct an estimator on a given compact interval. We provide a bound for L2L2-risk restricted to the compact interval. We discuss rates of convergence and give examples and simulation results for processes fitting in our framework.  相似文献   

9.
In this article, we review the concept of a Lévy copula to describe the dependence structure of a bivariate compound Poisson process. In this first statistical approach we consider a parametric model for the Lévy copula and estimate the parameters of the full dependent model based on a maximum likelihood approach. This approach ensures that the estimated model remains in the class of multivariate compound Poisson processes. A simulation study investigates the small sample behaviour of the MLEs, where we also suggest a new simulation algorithm. Finally, we apply our method to Danish fire insurance data.  相似文献   

10.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

11.
We consider a multidimensional diffusion XX with drift coefficient b(Xt,α)b(Xt,α) and diffusion coefficient εa(Xt,β)εa(Xt,β) where αα and ββ are two unknown parameters, while εε is known. For a high frequency sample of observations of the diffusion at the time points k/nk/n, k=1,…,nk=1,,n, we propose a class of contrast functions and thus obtain estimators of (α,β)(α,β). The estimators are shown to be consistent and asymptotically normal when n→∞n and ε→0ε0 in such a way that ε−1n−ρε1nρ remains bounded for some ρ>0ρ>0. The main focus is on the construction of explicit contrast functions, but it is noted that the theory covers quadratic martingale estimating functions as a special case. In a simulation study we consider the finite sample behaviour and the applicability to a financial model of an estimator obtained from a simple explicit contrast function.  相似文献   

12.
In this paper we consider the problem of estimating E[(YE[YX])2] based on a finite sample of independent, but not necessarily identically distributed, random variables . We analyze the theoretical properties of a recently developed estimator. It is shown that the estimator has many theoretically interesting properties, while the practical implementation is simple.  相似文献   

13.
This paper considers the nonparametric M-estimator in a nonlinear cointegration type model. The local time density argument, which was developed by Phillips and Park (1998) [6] and Wang and Phillips (2009) [9], is applied to establish the asymptotic theory for the nonparametric M-estimator. The weak consistency and the asymptotic distribution of the proposed estimator are established under mild conditions. Meanwhile, the asymptotic distribution of the local least squares estimator and the local least absolute distance estimator can be obtained as applications of our main results. Furthermore, an iterated procedure for obtaining the nonparametric M-estimator and a cross-validation bandwidth selection method are discussed, and some numerical examples are provided to show that the proposed methods perform well in the finite sample case.  相似文献   

14.
There exists a wide literature on parametrically or semi-parametrically modelling strongly dependent time series using a long-memory parameter d, including more recent work on wavelet estimation. As a generalization of these latter approaches, in this work we allow the long-memory parameter d to be varying over time. We adopt a semi-parametric approach in order to avoid fitting a time-varying parametric model, such as tvARFIMA, to the observed data. We study the asymptotic behavior of a local log-regression wavelet estimator of the time-dependent d. Both simulations and a real data example complete our work on providing a fairly general approach.  相似文献   

15.
We consider a binary branching process structured by a stochastic trait that evolves according to a diffusion process that triggers the branching events, in the spirit of Kimmel’s model of cell division with parasite infection. Based on the observation of the trait at birth of the first n generations of the process, we construct nonparametric estimator of the transition of the associated bifurcating chain and study the parametric estimation of the branching rate. In the limit n, we obtain asymptotic efficiency in the parametric case and minimax optimality in the nonparametric case.  相似文献   

16.
We construct and investigate a consistent kernel-type nonparametric estimator of the intensity function of a cyclic Poisson process when the period is unknown. We do not assume any particular parametric form for the intensity function, nor do we even assume that it is continuous. Moreover, we consider the situation when only a single realization of the Poisson process is available, and only in a bounded window. We prove, in particular, that the proposed estimator is consistent when the size of the window indefinitely expands. We also obtain complete convergence of the estimator.  相似文献   

17.
We study the problem of estimating time-varying coefficients in ordinary differential equations. Current theory only applies to the case when the associated state variables are observed without measurement errors as presented in Chen and Wu (2008) [4] and [5]. The difficulty arises from the quadratic functional of observations that one needs to deal with instead of the linear functional that appears when state variables contain no measurement errors. We derive the asymptotic bias and variance for the previously proposed two-step estimators using quadratic regression functional theory.  相似文献   

18.
We prove a representation of the partial autocorrelation function (PACF) of a stationary process, or of the Verblunsky coefficients of its normalized spectral measure, in terms of the Fourier coefficients of the phase function. It is not of fractional form, whence simpler than the existing one obtained by the second author. We apply it to show a general estimate on the Verblunsky coefficients for short-memory processes as well as the precise asymptotic behavior, with remainder term, of those for FARIMA processes.  相似文献   

19.
We consider the problem of estimating the marginals in the case where there is knowledge on the copula. If the copula is smooth, it is known that it is possible to improve on the empirical distribution functions: optimal estimators still have a rate of convergence n−1/2, but a smaller asymptotic variance. In this paper we show that for non-smooth copulas it is sometimes possible to construct superefficient estimators of the marginals: we construct both a copula and, exploiting the information our copula provides, estimators of the marginals with the rate of convergence logn/n.  相似文献   

20.
In this paper, a fixed design regression model where the errors follow a strictly stationary process is considered. In this model the conditional mean function and the conditional variance function are unknown curves. Correlated errors when observations are missing in the response variable are assumed. Four nonparametric estimators of the conditional variance function based on local polynomial fitting are proposed. Expressions of the asymptotic bias and variance of these estimators are obtained. A simulation study illustrates the behavior of the proposed estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号