首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dexamethasone converts pluripotent pancreatic AR42J cells into exocrine cells expressing digestive enzymes. In order to address molecular mechanism of this differentiation, we have investigated the role of mitogen-activated protein (MAP) kinase pathway and gene expressions of p21(waf1/cip1) and nuclear oncogenes (c-fos and c-myc) during AR42J cell differentiation. Dexamethasone markedly increased the intracellular and secreted amylase contents as well as its mRNA level. However, cell growth and DNA content were significantly decreased. With these phenotypic changes, AR42J cells induced transient mRNA expression of p21(waf1/cip1) gene, which reached maximal level by 6 h and then declined gradually toward basal state. In contrast to p21(waf1/cip1), c-fos gene expression was transiently inhibited by 6 h and then recovered to basal level by 24 h. Increased c-myc expression detected after 3 h, peaked by 12 h, and remained elevated during the rest of observation. Dexamethasone inhibited epidermal growth factor-induced phosphorylation of extracellular signal regulated kinase. Inhibition of MAP kinase pathway by PD98059 resulted in further elevation of the dexamethasone-induced amylase mRNA and p21(waf1/cip1) gene expression. These results suggest that p21(waf1/cip1) and nuclear oncogenes are involved in dexamethasone-induced differentiation and inhibition of MAP kinase pathway accelerates the conversion of undifferentiated AR42J cells into amylase-secreting exocrine cells.  相似文献   

2.
《Chemistry & biology》1997,4(6):423-431
Background: The p38 mitogen-activated protein (MAP) kinase regulates signal transduction in response to environmental stress. Pyridinylimidazole compounds are specific inhibitors of p38 MAP kinase that block the production of the cytokines interleukin-1 β and tumor necrosis factor α, and they are effective in animal models of arthritis, bone resorption and endotoxin shock. These compounds have been useful probes for studying the physiological functions of the p38-mediated MAP kinase pathway.Results: We report the crystal structure of a novel pyridinylimidazole compound complexed with p38 MAP kinase, and we demonstrate that this compound binds to the same site on the kinase as does ATP. Mutagenesis showed that a single residue difference between p38 MAP kinase and other MAP kinases is sufficient to confer selectivity among pyridinylimidazole compounds.Conclusions: Our results reveal how pyridinylimidazole compounds are potent and selective inhibitors of p38 MAP kinase but not other MAP kinases. It should now be possible to design other specific inhibitors of activated p38 MAP kinase using the structure of the nonphosphorylated enzyme.  相似文献   

3.
Oxidative stress has been implicated in mediation of vascular disorders. Earlier study showed that the exposure of vascular smooth muscle cells (VSMC) to pervanadate (hydrogen peroxide plus orthovanadate) resulted in the accumulation of [3H]phosphatidylbutanol. In this study, the effect of pervanadate on the activation of p38 mitogen-activated protein kinase (p38 MAPK) was studied in the VSMC. Pervanadate treatment activated p38 MAPK in a dose-and time-dependent manner. Interestingly, specific inhibition of p38 MAPK with SB203580 attenuated pervanadate-induced PLD activation. This correlates with the finding that expression of dominant negative mutants of MKK3/6 inhibited the PLD activation. SB203580 pretreatment also inhibited other cellular stressors (i.e. high osmolarity and UV light)-induced PLD activation. The possible correlationship of p38 MAPK activation with PKC was examined since PKC is reported to be involved in the pervanadate-induced PLD activation. Calphostin C, a PKC inhibitor, suppressed pervanadate-induced p38 MAPK and PLD activation in a dose-dependent manner. These results suggest that PKC-p38 MAPK may represent an upstream pathway of PLD in the signal transduction of cellular stress.  相似文献   

4.
The mechanisms of ultraviolet-B (UV-B)-induced apoptosis and the role of p38 mitogen-activated protein kinase (MAPK) were investigated in murine peritoneal macrophages. Exposure of murine peritoneal macrophages to UV-B irradiation induced rapid apoptosis concurrent with DNA fragmentation and activation of caspase-3 but did not activate caspase-1. UV-B irradiation (100 mJ/cm2) also induced expression of phospho-p38 and -c-Jun N-terminal kinase (JNK) MAPK; however, no significant expression of phospho-p42/44 was observed 120 min after exposure. Pretreatment of macrophages with a p38 MAPK inhibitor, 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole (SB202190), and a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp-CHO, suppressed UV-B irradiation-induced apoptosis as observed by DNA laddering and DNA fragmentation estimation quantitatively. Pretreatment with caspase-1 inhibitor, N-acetyl-Tyr-Val-Ala-Asp-CHO, had no effect. UV-B-induced caspase-3 activation resulted in the cleavage of poly-(ADP-ribose) polymerase (PARP), which was inhibited by the caspase-3 inhibitor. SB202190 pretreatment also prevented activation of caspase-3 and the cleavage of PARP. However, the caspase-3 and -1 inhibitors did not affect UV-B-induced expression of phospho-p38 and -JNK. These results suggest that activation of p38 MAPK upstream of caspases might play an important role in the apoptotic process of macrophages exposed to UV-B irradiation.  相似文献   

5.
The depletion of stratospheric ozone causes related increase in UV light below about 310 nm, which significantly affects biological and ecological systems. To understand the wavelength-specific effects of UV light, Molt4 cells (human T lymphoma cells) were irradiated with a series of monochromatic UV lights and the activities of three members of the mitogen-activated protein (MAP) kinase group were examined. Extracellular signal-regulated kinase was specifically activated within 1 min after UV irradiation in the range 320-360 nm. In contrast, P38 kinase was activated by 270-280 nm light with a peak at 1 min after irradiation. c-Jun N-terminal kinase activation was observed in a narrow range of UV light with a sharp peak at 280 nm occurring in 10 min. JNK translocated from the cytosol to the nucleus upon irradiation, while P38 remained in the cytosol even after UV irradiation. The activation of three MAP kinases was prevented by antioxidant reagents, suggesting that an oxidative signal initiates these responses. These results confirm that UV light affects various cellular functions through the activation of intracellular signaling systems including MAP kinase family proteins. However, the UV-induced activities of the separate MAP kinases show distinctly different dose, time and wavelength dependencies.  相似文献   

6.
UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.  相似文献   

7.
Hydroxyurea is commonly used to treat hematologic disorders and some type of solid tumors, but the mechanism for its therapeutic effect is not clearly known. In this study, we examined the effect of hydroxyurea on rat hepatoma McA-RH7777 cells, specifically, on the role of mitogen-activated protein (MAP) kinase signal transduction pathways and p21(Waf1), p27(Kip1) and p53. Rat hepatoma McA-RH7777 cells treated with hydroxyurea for 7 days, caused the inhibition of cell growth in a dose-dependent manner. But, this growth inhibition was not caused by necrosis or apoptosis but instead was associated with cell senescence-like change as evidenced by senescence associated-beta-galactosidase staining, and cells arrest at G1 phase of cell cycle. Phosphorylation of MAP kinases, such as ERK, JNK, and p38, was found to be decreased after treatment of cells with hydroxyurea. But, the expression of p21(Waf1) was increased, while p27(Kip1) and p53 were not detected in hydroxyurea treated rat hepatoma cells. Hydroxyurea treatment induced G1 arrest and a senescence-like changes in rat hepatoma McA-RH7777 cells may be the likely results of signal disruption of MAP kinases (ERK, JNK, and p38 MAP kinase) and p21(Waf1) over-expression.  相似文献   

8.
The role of the mitogen-activated protein (MAP) kinase phosphatases (MKPs) in light-damaged cells is unclear. Therefore we investigated the involvement of MKP-1 in the regulation of apoptosis and cell survival mediated by MAP kinase pathways in light-damaged human retinal pigment epithelial cells (ARPE-19). Light dose-dependent changes in the expression of MKP-1 and in the phosphorylation status of the MAP kinases, c-Jun-N-terminal kinase (JNK) and p38 were demonstrated. Low light doses up to 2 J cm−2 led to an upregulation of MKP-1 which resulted in the prevention of cell death by inactivating JNK kinase. However, higher light doses (≥3 J cm−2) significantly reduced MKP-1 protein expression and subsequently led to an increased JNK kinase activity followed by a significant increase in cell death. JNK kinase inactivation by the JNK inhibitor SP600125 significantly reduced light-induced cell death, suggesting that the cytoprotective properties of MKP-1 are mediated mainly by the JNK MAP kinase pathway. Physiological concentrations of ascorbic acid or taurine were seen to prevent apoptosis and cell death in light-damaged ARPE-19 cells by reducing oxidative stress within cells, thus maintaining MKP-1 at high levels, leading to an inactivation of the JNK kinase pathway which resulted in an increased cell viability.  相似文献   

9.
Oxidative stress and inflammatory tissue damage are two major events frequently implicated in carcinogenesis. Numerous polyphenolic compounds derived from plants possess antioxidant and anti-inflammatory activities and are hence effective in preventing cancer. Oligonol is a polyphenol formulation enriched with catechin-type oligomers. As an initial approach to assess the chemopreventive potential of oligonol, we have determined its effects on inflammatory as well as oxidative damage in mouse skin irradiated with UVB. Topical application of oligonol onto the dorsal skin of male HR-1 hairless mice 30 min prior to UVB exposure diminished epidermal hyperplasia and formation of 4-hydroxynonenal, a biochemical hallmark of lipid peroxidation. Topical application of oligonol also significantly inhibited UVB-induced cyclooxygenase (COX-2) expression in mouse skin. Oligonol diminished the DNA binding of activator protein-1 (AP-1) and CCAAT/enhancer binding protein (C/EBP), and the expression of C/EBPdelta in mouse skin exposed to UVB. Our study also revealed that oligonol attenuated UVB-induced catalytic activity as well as expression of p38 mitogen-activated protein (MAP) kinase. Moreover, UVB-induced phosphorylation of another upstream kinase Akt was attenuated by oligonol. Taken together, oligonol showed antioxidative and anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting COX-2 expression via blockade of the activation of AP-1 and C/EBP, and upstream kinases including p38 MAP kinase and Akt.  相似文献   

10.
Pervanadate, a complex of vanadate and H(2)O(2), has an insulin mimetic effect, and acts as an inhibitor of protein tyrosine phosphatase. Pervanadate-induced phospholipase D (PLD) activation is known to be dependent on the tyrosine phosphorylation of cellular proteins and protein kinase C (PKC) activation, and yet underlying molecular mechanisms are not clearly understood. Here, we investigated the signaling pathway of pervanadate-induced PLD activation in Rat2 fibroblasts. Pervanadate increased PLD activity in dose- and time- dependent manner. Protein tyrosine kinase inhibitor, genistein, blocked PLD activation. Interestingly, AG-1478, a specific inhibitor of the tyrosine kinase activity of epidermal growth factor receptor (EGFR) blocked not only the PLD activation completely but also phosphorylation of p38 mitogen-activated protein kinase (MAPK). However, AG-1295, an inhibitor specific for the tyrosine kinase activity of pletlet drived growth factor receptor (PDGFR) did not show any effect on the PLD activation by pervanadate. We further found that pervanadate increased phosphorylation levels of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). SB203580, a p38 MAPK inhibitor, blocked the PLD activation completely. However, the inhibitions of ERK by the treatment of PD98059 or of JNK by the overexpression of JNK interacting peptide JBD did not show any effect on pervanadate-induced PLD activation. Inhibition or down-regulation of PKC did not alter the pervanadate-induced PLD activation in Rat2 cells. Thus, these results suggest that pervanadate-induced PLD activation is coupled to the transactivation of EGFR by pervanadate resulting in the activation of p38 MAP kinase.  相似文献   

11.
Paradoxical activation of Raf by a novel Raf inhibitor.   总被引:8,自引:0,他引:8  
BACKGROUND: Raf is a proto-oncogene that is activated in response to growth factors or phorbol esters, and is thought to activate MAP kinase kinase-1 (MKK1) and hence the classical MAP kinase (MAPK) cascade. RESULTS: The compound ZM 336372 is identified as a potent and specific inhibitor of Raf isoforms in vitro. Paradoxically, exposure of cells to ZM 336372 induces > 100-fold activation of c-Raf (measured in the absence of compound), but without triggering any activation of MKK1 or p42 MAPK/ERK2. The ZM 336372-induced activation of c-Raf occurs without any increase in the GTP-loading of Ras and is not prevented by inhibition of the MAPK cascade, protein kinase C or phosphatidylinositide 3-kinase. ZM 336372 does not prevent growth factor or phorbol ester induced activation of MKK1 or p42 MAPK/ERK2, or reverse the phenotype of Ras- or Raf-transformed cell lines. The only other protein kinase inhibited by ZM 336372 out of 20 tested was SAPK2/p38. Although ZM 336372 is structurally unrelated to SB 203580, a potent inhibitor of SAPK2/p38, the mutation of Thr106-->Met made SAPK2/p38 insensitive to ZM 336372 as well as to SB 203580. CONCLUSIONS: Raf appears to suppress its own activation by a novel feedback loop, such that inhibition is always counterbalanced by reactivation. These observations imply that some agonists reported to trigger the cellular activation of c-Raf might actually be inhibitors of this enzyme, and that compounds which inhibit the kinase activity of Raf might not be useful as anticancer drugs. The binding sites for ZM 336372 and SB 203580 on Raf and SAPK2/p38 are likely to overlap.  相似文献   

12.
We have examined the possible role of the stress-activated JNK and p38 protein kinases in cellular sensitivity following Photofrin-mediated photodynamic therapy (PDT). Previously we reported that immortalized Li-Fraumeni syndrome (LFS) cells are more resistant to Photofrin-mediated PDT compared to normal human fibroblasts (NHF) at equivalent cellular Photofrin levels. In the current work we report that Photofrin-mediated PDT increased the activity of JNK1 and p38 within 30 min in both cell types. However, the increased activity of JNK1 and p38 was transient in the sensitive NHF cells and returned back to near basal levels by 3 h after PDT. In contrast, the resistant LFS cells exhibited a more prolonged activation of JNK and p38, which lasted for at least 11 h and 7 h after PDT, respectively. Blocking of the p38 pathway in LFS cells by transient infection with a recombinant adenovirus expressing a dominant negative mutant of p38 or in HeLa cells by stable transfection with a dominant negative mutant of p38 had no effect on cell survival following PDT. These data suggest that although Photofrin-mediated PDT is able to induce JNK1 and p38 in human cells, the p38 pathway alone does not play a major role in the sensitivity of LFS cells to Photofrin-mediated PDT.  相似文献   

13.
14.
The role of sphingomyelinase (SMase) activation and mitogen activated protein kinases (MAPKs) activation in cellular apoptosis was investigated during the hyperthermic treatment of HL-60 human leukemia cells. Treating the cells for 1 h at 43(o)C caused more than 50% of cellular apoptosis within several hours. The neutral-SMase activity in the cells treated for 1 h at 42(o)C was slightly increased but decreased in the cells treated at 43(o)C or 44(o)C for the same period whereas the acid SMase activity was slightly increased after heating the cells at 42(o)C and 43(o)C and markedly increased at 44(o)C for 1 h. Treatment of cells with inhibitors of SMase activation and ceramide formation significantly reduced the heat-induced apoptosis. Three major families of mitogen-activated protein kinases (MAPKs), i.e. ERK1/2, p38 and JNK, were activated by the hyperthermic treatment of cells. Inhibition of ERK1/2 with PD98059 exerted little effect on the heat-induced apoptosis and p38 inhibition with SB203580 slightly lessened apoptosis whereas, inhibition of JNK with SP600125 markedly suppressed the heat-induced apoptosis. These results indicate that heat-shock induced the activation of SMase, particularly acid-SMase, thereby causing apoptosis and that JNK played a pivotal role in heat-induced apoptosis in HL-60 leukemia cells.  相似文献   

15.
Protein phosphorylation is a major mechanism that regulates many basic cellular processes. Identification and characterization of substrates for a given protein kinase can lead to a better understanding of signal transduction pathways. However, it is still difficult to efficiently identify substrates for protein kinases. Here, we propose an integrated proteomic approach consisting of in vitro dephosphorylation and phosphorylation, phosphoprotein enrichment, and 2D‐DIGE. Phosphatase treatment significantly reduced the complexity of the phosphoproteome, which enabled us to efficiently identify the substrates. We employed p38 mitogen‐activated protein kinase (p38 MAP kinase) as a model kinase and identified 23 novel candidate substrates for this kinase. Seven selected candidates were phosphorylated by p38 MAP kinase in vitro and in p38 MAP kinase‐activated cells. This proteomic approach can be applied to any protein kinase, allowing global identification of novel substrates.  相似文献   

16.
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.  相似文献   

17.
18.
Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient’s survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study’s aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.  相似文献   

19.
Identifying materials contributing to skin hydration, essential for normal skin homeostasis, has recently gained increased research interest. In this study, we investigated the potential benefits and mechanisms of action of Aspergillus oryzae-fermented wheat peptone (AFWP) on the proliferation and hydration of human skin keratinocytes, through in vitro experiments using HaCaT cell lines. The findings revealed that compared to unfermented wheat peptone, AFWP exhibited an improved amino acid composition, significantly (p < 0.05) higher DPPH scavenging capability and cell proliferation activity, and reduced lipopolysaccharide-induced NO production in RAW 264.7 cells. Furthermore, we separated AFWP into eleven fractions, each ≤2 kDa; of these, fraction 4 (AFW4) demonstrated the highest efficacy in the cell proliferation assay and was found to be the key component responsible for the cell proliferation potential and antioxidant properties of AFWP. Additionally, AFW4 increased the expression of genes encoding natural moisturizing factors, including filaggrin, transglutaminase-1, and hyaluronic acid synthase 1–3. Furthermore, AFW4 activated p44/42 MAPK, but not JNK and p38 MAPK, whereas PD98059, a p44/42 MAPK inhibitor, attenuated the beneficial effects of AFW4 on the skin, suggesting that the effects of AFW4 are mediated via p44/42 MAPK activation. Finally, in clinical studies, AFW4 treatment resulted in increased skin hydration and reduced trans-epidermal water loss compared with a placebo group. Collectively, these data provide evidence that AFW4 could be used as a potential therapeutic agent to improve skin barrier damage induced by external stresses.  相似文献   

20.
The regiospecific synthesis of 2a (Scheme 3), a novel and potent pyridinyl imidazole inhibitor of p38 MAP (mitogen-activated protein) kinase, and the regioselective preparation of its regioisomer 2b (Scheme 4) are described. Chromatographic and spectroscopic data are presented, which in this class of compounds allow the unambiguous identification of regioisomers prepared by a nonregiospecific synthetic strategy. Biological data demonstrating the importance of the correct regiochemistry for inhibition of p38 are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号