共查询到20条相似文献,搜索用时 68 毫秒
1.
基于局部最小二乘支持向量机的光谱定量分析 总被引:1,自引:0,他引:1
提出了一种基于局部最小二乘支持向量机(LSSVM)的回归方法,以克服待测参数和光谱数据间的非线性。本方法首先通过欧式距离选取局部训练样本子集,然后利用该子集建立LSSVM校正模型。由于每个测试样本建模时要选取不同的训练样本,因此提出相对距离的概念用来改进高斯核函数,使LSSVM的参数对于不同的训练样本具有自调整功能。针对一批汽油样本的实验结果表明,本方法的预测精度优于常见的局部线性建模方法和全局建模方法。 相似文献
3.
4.
本文用近红外光谱结合最小二乘双胞胎支持向量机(LSTSVM)算法建立了烟叶等级分类模型。从三个等级共210个烟叶样品中,取出120个样品作为建模集,剩余90个样品作为预测集。为了建立最优模型,对光谱预处理方法和模型参数进行筛选优化,最优模型对预测集样品的平均识别率为95.56%,结果表明该方法可以作为烟叶等级分类的一种有效方法。此外,将该算法与SIMCA、PLS-DA、SVM等三种常见的模式识别算法进行了比较,结果表明基于样品的原始光谱,同等条件下,LSTSVM算法的预测效果优于其他三种算法。 相似文献
5.
根据鄱阳湖南矶山区域土壤的X荧光光谱和可见近红外光谱特征,建立了3种数据融合(等权融合、累加融合、外积融合)的最小二乘向量机定量分析模型。结果表明,等权融合和外积融合模型精度和稳定性均优于单一光谱定量分析模型。其中外积融合模型性能最佳,其决定系数(R2)为0.85,校正均方根误差(RMSEC)为0.09,预测均方根误差(RMSEP)为0.06,相对分析误差(RPD)为2.41,满足实际土壤中Cd的检测需求。该方法准确可靠,可为我国土壤重金属分类分级方法研究提供参考。 相似文献
6.
主成分-人工神经网络在近红外光谱定量分析中的应用 总被引:13,自引:0,他引:13
近红外光谱的主成分由非线性迭代偏最小二乘法(NIPALS)求出。主成分作标准化处理后,作为B-P神经网络的输入结点进行非线性迭代。该法的优点是,充分利用了全光谱的数据,得到消除噪声后的最佳主成分,能建立非线性模型,B-P神经网络迭代时间显著缩短。用该法对大麦中的淀粉含量进行了定量分析研究。结果为:校准和预测的相关系数分别为0.981和0.953,校准和预测的相对标准偏差分别为1.70%和2.48%。 相似文献
7.
近红外光谱-径向基神经网络在异烟肼片无损定量分析中的应用 总被引:1,自引:1,他引:1
应用异烟肼片粉末的近红外漫反射光谱数据分别结合偏最小二乘法(PLS)和径向基神经网络(RBFNN)建立定量分析模型,并用所建模型对预测集样品进行了预测,结果表明:应用RBFNN所建立的定量分析模型优于PLS模型,相关系数(r)值由0.99593提高到0.99734,交互验证均方根误差(RMSECV)值由0.00523下降到0.00423,预测均方根误差(RMSEP)值由0.00614下降到0.00501。 相似文献
8.
近红外光谱技术应用于摇头丸中MDMA、MA无损定量分析的研究 总被引:9,自引:0,他引:9
提出了用近红外漫反射光谱快速无损测定摇头丸中亚甲二氧基甲基苯丙胺(MDMA)、甲基苯丙胺(MA)含量的新方法。收集含MDMA摇头丸56份和含MA摇头丸58份,采用GC-MS确定其中MDMA和MA质量分数分别为0.64%~53.83%,0.37%~5.81%。在12000~4000 cm-1扫描样品,以交叉验证误差均方根(RMSECV)为指标,通过筛选,对各组分确定了用于建模的最优近红外波段和光谱预处理方法,采用偏最小二乘算法建立了近红外光谱与这2组分GC-MS分析值之间的校正模型,并以此分别预测21个样本。δ代表预测样本NIR值/GC-MS值,MDMA和MA在裸片和塑料包装中δ值的均值为99%、101%、100%、101%,RSD分别为7.33%、20.3%、4.52%、12.3%。该方法可对摇头丸裸片中MDMA和MA进行快速无损分析,结果可靠,为刑事案件中毒品成分的测定提供了一种新的分析手段。 相似文献
9.
在生物燃气生产过程中,玉米秸秆中的木质纤维素(纤维素、半纤维素和木质素)成分含量对厌氧发酵性能具有重要影响。针对传统方法测定本质纤维素的耗时、成本高等问题,本研究分析了近红外光谱(NIRS)结合化学计量学进行玉米秸秆中木质纤维素含量快速检测的可行性。为提高NIRS模型的检测精度和效率,将遗传模拟退火算法(GSA)、区间偏最小二乘法(iPLS)和支持向量机(SVM)相结合,构建遗传模拟退火区间支持向量机(GSA-iSVM)进行NIRS特征谱区和SVM参数的同步优化,并与反向区间偏最小二乘法(BiPLS)、遗传模拟退火区间偏最小二乘法(GSA-iPLS)的优选特征谱区的建模性能进行对比,确定基于GSA-iSVM建立的纤维素和木质素校正模型性能最佳,基于GSA-iPLS建立的半纤维素校正模型性能最佳。纤维素、半纤维素和木质素最佳校正模型验证集的预测决定系数(Rp2)分别为0.910、 0.990和0.939,预测均方根误差(RMSEP)分别为0.881%、 0.707%和0.249%,剩余预测偏差(RPD)分别为3.283、 10.235和4.27... 相似文献
10.
基于近红外光谱技术,将偏最小二乘法(Partial Least Squares,PLS)和单隐层的反向传播网络(Back-Propagation Network,BP)联用并测定了鲜乳中4种主成分含量.用PLS法将原始数据压缩为主成分,取前3个主成分的14个数据输入网络,以Kolmogorov定理为依据,经过实验确定中间层的神经元个数为29,初始训练迭代次数为1000,建立了脂肪、蛋白质、乳糖、牛乳总固体4种主成分含量的预测校正模型.PLS-BP模型对样品4个组分含量的预测决定系数(R2)分别为:0.961、0.974、0.951、0.997;本研究为近红外光谱技术在鲜乳多组分快速检测提供了新思路. 相似文献
11.
建立近红外光谱技术测定油菜杂交种纯度的方法。考察了样品杯类型、光谱预处理方法和波长范围对近红外模型预测性能的影响。结果发现,由不同样品杯采集近红外光谱所建立的校正模型,其预测性能存在较大的差异,旋转杯明显优于安瓿瓶;采用消除常数偏移量对光谱进行预处理能有效地提取光谱信息,选择5 000~8 000 cm–1波数范围作为建模谱区,其包含的有效信息率最高。在最佳条件下建立油菜杂交种纯度的校正模型,其决定系数(R2)为0.980 0,交互验证均方根误差(RMSECV)为0.008 59。利用该模型对预测集进行测定,预期均方根误差(RMSEP)为0.007 59,表明该模型具有很好的预测性能,近红外光谱法用于杂交种纯度的鉴定是可行的。 相似文献
12.
近红外光谱快速测定高浓度烟酰胺 总被引:2,自引:0,他引:2
利用烟酰胺在乙醇溶液中波段范围为9001-8060cm^-1和7443-7144cm^-1的近红外一阶导数吸收光谱,经过中心化、矢量归一化预处理,应用偏最小二乘法回归来消除溶剂乙醇的近红外吸收干扰,建立了快速高浓度烟酰胺的方法。54个样本作为校正集,PLS最佳回归因子数为4时,决定系数等于0.997;线性范围为0.13-0.70mol/L。本方法应用于9个待测样品,预测相对偏差小于2.9%,结果令人满意,同时还讨论了一些影响回归精度的因素。 相似文献
13.
Harald Kallevik Susanne Brunsgaard Hansen Øystein Sæther Olav Martin Kvalheim Johan Sjöblom 《Journal of Dispersion Science and Technology》2013,34(3):245-262
Water-in-oil emulsions are investigated by means of multivariate analysis of near infrared (NIR) spectroscopic profiles in the range 1100 — 2250 nm. The oil phase is a paraffin-diluted crude oil from the Norwegian Continental Shelf. The influence of water absorption and light scattering of the water droplets are shown to be strong. Despite the strong influence of the water phase, the NIR technique is still capable of predicting the composition of the investigated oil phase. 相似文献
14.
偏最小二乘-反向传播-近红外光谱法同时测定饲料中4种氨基酸 总被引:7,自引:0,他引:7
偏最小二乘与人工神经网络联用对70个饲料样品建立起天门冬氨酸(Asp)、谷氨酸(Glu)、丝氨酸(Ser)和组氨酸(His)4种氨基酸含量的预测校正模型,以样品平行扫描光谱验证校正模型预测的准确性和重现性。用偏最小二乘法将原始数据压缩为主成分,采用单隐层的反向传播网络建模。取前3个主成分的12个数据输入网络,以Kolmogorov定理为依据,经过实验确定中间层的神经元个数为25,初始训练迭代次数为1000。偏最小二乘-反向传播网络模型对样品4个组分含量的预测决定系数(R2)分别为:0.981、0.997、0.979、0.946;样品平行扫描光谱预测值的标准偏差分别为:0.020、0.029、0.017、0.023。本研究为近红外快速检测在组分含量较低的样品实现多组分同时测定提供了思路。 相似文献
15.
《Analytical letters》2012,45(14):2384-2393
Near infrared spectroscopy in combination with appropriate chemometric methods is an effective technique for quantitative analysis of parameters of interest for the pharmaceutical industry. In this study, the artificial neural network (ANN) was applied to monitor critical parameters (compression force, tablet hardness, mean particle size, and active pharmaceutical ingredient concentration of tablets) in the process of naproxen pharmaceutical preparation. The performance of ANN was compared to linear methods (partial least squares regression (PLS) and synergy interval partial squares (siPLS)). The ANN models for compression force, tablet hardness, mean particle size, and active pharmaceutical ingredient concentration of tablets yielded the low root mean square error of prediction (RMSEP) values of 0.936 KN, 0.302 kg, 4.49 mg, and 2.14 µm, respectively. The predictive ability of the PLS model was improved by siPLS with selection of spectral regions and the best performance among all calibration methods was showed by the nonlinear method (ANN). Effective models were built by using these approaches using near infrared spectroscopy. 相似文献
16.
17.
18.
近红外光谱法快速测定涂料固化剂中游离甲苯二异氰酸酯含量 总被引:1,自引:0,他引:1
用气相色谱分析值为参照,采用近红外透射光谱(NIR)技术采集相应样品的NIR光谱,研究了涂料固化剂中游离甲苯二异氰酸酯(TDI)含量的快速测定分析方法。 并从120个固化剂样品中挑选出109个代表性的样品建模,选择7320~7250 cm-1和8485~8370 cm-1波段区间,用偏最小二乘法(PLS)和完全交互验证方式建立TDI含量的预测模型。 结果表明,固化剂中游离甲苯二异氰酸酯含量和近红外光谱之间存在较好的相关性,其预测模型的校正集均方差(RMSEC)为0.0815,验证集均方差(RMSEP)为0.0715,模型性能良好。 近红外光谱法可快速准确测定游离甲苯二异氰酸酯(TDI)含量,用于固化剂样品快速分析。 相似文献
19.
提出了近红外漫反射光谱快速无损测定缴获白粉中海洛因、O6单乙酰吗啡、乙酰可待因含量新方法。采用GC-MS分析了缴获88份白粉中这3组分的质量百分含量范围分别为12.15%~79.54%,0.4%~18.56%,0.23%~9.11%。以交叉验证误差均方根(RMSECV)为指标,确定各组分用于建模的最优近红外波段和光谱预处理方法,采用偏最小二乘算法建立近红外光谱与这三组分GC-MS分析值之间的校正模型,并以此预测了35个白粉样本。δ代表预测样本NIR值/GC-MS值,海洛因、O6单乙酰吗啡、乙酰可待因δ值的均值为100.63%,100.35%和98.71%,RSD分别为3.96%,7.02%,8.54%。该方法快速无损,结果可靠。 相似文献
20.
基于交互式自模型混合物分析的近红外光谱波长变量优选方法 总被引:1,自引:1,他引:1
为了提高近红外光谱定量分析的预测精度和建模效率,提出了一种基于交互式自模型的混合物分析的波长优选方法,根据光谱各波长变量的纯度值和标准差值,选择含有用信息的波长变量,并引入相关权函数解决变量间共线性问题.通过依次迭代选择的变量建立定量校正模型,由交互验证均方根预测误差(RMSECV)确定最佳波长变量个数.应用该波长变量优选方法对具有不同葡萄糖含量的两组(四成分葡萄糖水溶液实验和人体血浆实验)近红外光谱数据进行分析,两组数据中分别只选择了全部变量的0.3%建立定量校正模型,其验证集葡萄糖浓度的均方根预测误差(RMSEP)分别减少为669和15 mg/L.与全谱范围及优选波段建立的定量校正模型比较,本方法能够通过波长变量优选最小化冗余信息、提高预测精度及建模效率. 相似文献