首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper, two independent methods are used to show that the non-Hermitian -symmetric wrong-sign quartic Hamiltonian H = (1/2m)p 2gx 4 is exactly equivalent to the conventional Hermitian Hamiltonian . First, this equivalence is demonstrated by using elementary differential-equation techniques and second, it is demonstrated by using functional-integration methods. As the linear term in the Hermitian Hamiltonian is proportional to ℏ, this term is anomalous; that is, the linear term in the potential has no classical analog. The anomaly is a consequence of the broken parity symmetry of the original non-Hermitian -symmetric Hamiltonian. The anomaly term in remains unchanged if an x 2 term is introduced into H. When such a quadratic term is present in H, this Hamiltonian possesses bound states. The corresponding bound states in are a direct physical measure of the anomaly. If there were no anomaly term, there would be no bound states.  相似文献   

2.
Analytic wave functions and the corresponding energies for a class of the $ \mathcal{P}\mathcal{T} $ -symmetric two-dimensional quartic potentials are found. The general form of the solutions is discussed.  相似文献   

3.
4.
The Scarf I and Scarf II potentials are discussed within a common mathematical framework, which is then specified to handle the two potentials separately both in the conventional Hermitian and in the -symmetric setting. The physically admissible solutions are identified in each case together with the corresponding energy eigenvalues. Several main differences between the -symmetric Scarf I and II potentials are pointed out. These include the presence and absence of the quasi-parity quantum number, the sign of the pseudo-norm, the mechanism of the spontaneous breakdown of symmetry and the non- orthogonality of otherwise admissible solutions in the Scarf I potential. Similarities and differences with respect to the corresponding Hermitian systems are also pointed out.  相似文献   

5.
G. Lévai 《Pramana》2009,73(2):329-335
The $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} symmetry of the Coulomb potential and its solutions are studied along trajectories satisfying the $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} symmetry requirement. It is shown that with appropriate normalization constant the general solutions can be chosen $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} -symmetric if the L parameter that corresponds to angular momentum in the Hermitian case is real. $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} symmetry is spontaneously broken, however, for complex L values of the form L = −1/2 + iλ. In this case the potential remains $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} -symmetric, while the two independent solutions are transformed to each other by the $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} operation and at the same time, the two series of discrete energy eigenvalues turn into each other’s complex conjugate.  相似文献   

6.
Zafar Ahmed 《Pramana》2009,73(2):323-328
We find that a non-differentiability occurring whether in real or imaginary part of a complex $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} -symmetric potential causes a scarcity of the real discrete eigenvalues despite the real part alone possessing an infinite spectrum. We demonstrate this by perturbing the real potentials x 2 and |x| by imaginary $ \mathcal{P}\mathcal{T} $ \mathcal{P}\mathcal{T} -symmetric potentials ix/it|x| and ix, respectively.  相似文献   

7.
A review of a few recent developments in our analysis and applications of the coupled-channel version of the formalism of -symmetric quantum mechanics is given.  相似文献   

8.
Recently, a class of -invariant scalar quantum field theories described by the non-Hermitian Lagrangian = () 2 +g 2 (i) was studied. It was found that there are two regions of . For <0 the -invariance of the Lagrangian is spontaneously broken, and as a consequence, all but the lowest-lying energy levels are complex. For 0 the -invariance of the Lagrangian is unbroken, and the entire energy spectrum is real and positive. The subtle transition at =0 is not well understood. In this paper we initiate an investigation of this transition by carrying out a detailed numerical study of the effective potential V eff (c) in zero-dimensional spacetime. Although this numerical work reveals some differences between the <0 and the >0 regimes, we cannot yet see convincing evidence of the transition at =0 in the structure of the effective potential for -symmetric quantum field theories.  相似文献   

9.
Emphasizing the physical constraints on the formulation of the quantum theory, based on the standard measurement axiom and the Schrödinger equation, we comment on some conceptual issues arising in the formulation of the $\mathcal{P}\mathcal{T}$ -symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide an accessible account of a Krein-space derivation of the $\mathcal{C}\mathcal{P}\mathcal{T}$ -inner product, that was widely known to mathematicians since 1950’s. We show how this derivation is linked with the pseudo-Hermitian formulation of the $\mathcal{P}\mathcal{T}$ -symmetric quantum mechanics.  相似文献   

10.
We show in the present paper that pseudo-Hermitian Hamiltonian systems with even \(\mathcal {P}\mathcal {T}\)-symmetry \((\mathcal {P}^{2}=1,\mathcal {T}^{2}=1)\) admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd \(\mathcal {P}\mathcal {T}\)-symmetric systems \((\mathcal {P}^{2}=1,\mathcal {T}^{2}=-1)\) which is appropriate to the fermions (Scolarici and Solombrino, Phys. Lett. A 303, 239 2002; Jones-Smith and Mathur, Phys. Rev. A 82, 042101 2010). We establish that the pseudo-Hermitian Hamiltonians with even \(\mathcal {P}\mathcal {T}\)-symmetry admit a degeneracy structure if the operator \(\mathcal {PT}\) anticommutes with the metric operator η σ which is necessarily indefinite. We also show that the Krein space formulation of the Hilbert space is the convenient framework for the implementation of unbroken \(\mathcal {P}\mathcal {T}\)-symmetry. These general results are illustrated with great details for four-level pseudo-Hermitian Hamiltonian with even \(\mathcal {P}\mathcal {T}\) -symmetry.  相似文献   

11.
General point interactions for the second derivative operator in one dimension are studied. In particular, -self-adjoint point interactions with the support at the origin and at points ±l are considered. The spectrum of such non-Hermitian operators is investigated and conditions when the spectrum is pure real are presented. The results are compared with those for standard self-adjoint point interactions.  相似文献   

12.
We develop a technique for the construction of integrable models with a 2 grading of both the auxiliary (chain) and quantum (time) spaces. These models have a staggered disposition of the anisotropy parameter. The corresponding Yang–Baxter equations are written down and their solution for the gl(N) case is found. We analyze in details the N = 2 case and find the corresponding quantum group behind this solution. It can be regarded as the quantum group , with a matrix deformation parameter q such that (q )2 = q 2. The symmetry behind these models can also be interpreted as the tensor product of the (–1)-Weyl algebra by an extension of q (gl(N)) with a Cartan generator related to deformation parameter –1.  相似文献   

13.
We review the non-anticommutative Q-deformations of = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ∼ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action. The text was submitted by the authors in English.  相似文献   

14.
We present results for the universal anomalous dimension γ uni(j) of Wilson twist-2 operators in the = 4 supersymmetric Yang-Mills theory in the first four orders of perturbation theory. The text was submitted by the authors in English.  相似文献   

15.
We compute the $\mathcal{R}$ -matrix which intertwines two dimensional evaluation representations with Drinfeld comultiplication for ${\text{U}}_q \left( {\widehat{{\text{sl}}}_{\text{2}} } \right)$ . This $\mathcal{R}$ -matrix contains terms proportional to the δ-function. We construct the algebra $A\left( \mathcal{R} \right)$ generated by the elements of the matrices L±(z) with relations determined by $\mathcal{R}$ . In the category of highest-weight representations, there is a Hopf algebra isomorphism between $A\left( \mathcal{R} \right)$ and an extension $\overline {\text{U}} _q \left( {\widehat{{\text{sl}}}_{\text{2}} } \right)$ of Drinfeld's algebra.  相似文献   

16.
A one dimensional, parity-time ( $\mathcal{PT}$ )-symmetric magnetic metamaterial comprising split-ring resonators having both gain and loss is investigated. In the linear regime, the transition from the exact to the broken $\mathcal{PT}$ -phase is determined through the calculation of the eigenfrequency spectrum for two different configurations; the one with equidistant split-rings and the other with the split-rings forming a binary pattern ( $\mathcal{PT}$ dimer chain). The latter system features a two-band, gapped spectrum with its shape determined by the gain/loss coefficient as well as the interelement coupling. In the presence of nonlinearity, the $\mathcal{PT}$ dimer chain configuration with balanced gain and loss supports nonlinear localized modes in the form of a novel type of discrete breathers below the lower branch of the linear spectrum. These breathers that can be excited from a weak applied magnetic field by frequency chirping, can be subsequently driven solely by the gain for very long times. The effect of a small imbalance between gain and loss is also considered. Fundamental gain-driven breathers occupy both sites of a dimer, while their energy is almost equally partitioned between the two split-rings, the one with gain and the other with loss. We also introduce a model equation for the investigation of classical $\mathcal{PT}$ symmetry in zero dimensions, realized by a simple harmonic oscillator with matched time-dependent gain and loss that exhibits a transition from oscillatory to diverging motion. This behavior is similar to a transition from the exact to the broken $\mathcal{PT}$ phase in higher-dimensional $\mathcal{PT}$ -symmetric systems. A stability condition relating the parameters of the problem is obtained in the case of a piece-wise constant gain/loss function that allows the construction of a phase diagram with alternating stable and unstable regions.  相似文献   

17.
E. Caliceti  S. Graffi 《Pramana》2009,73(2):241-249
We generalize some recently established criteria for the reality and non-reality of the spectrum of some classes of \(\mathcal{P}\mathcal{T}\)-symmetric Schrödinger operators. The criteria include cases of discrete spectra and continuous ones.  相似文献   

18.
We prove that \(\mathcal{N}=2\) theories that arise by taking n free hypermultiplets and gauging a subgroup of \({\text {Sp}}(n)\), the non-R global symmetry of the free theory, have a remaining global symmetry, which is a direct sum of unitary, symplectic, and special orthogonal factors. This implies that theories that have \({\text {SU}}(N)\) but not \({\text {U}}(N)\) global symmetries, such as Gaiotto’s \(T_N\) theories, are not likely to arise as IR fixed points of RG flows from weakly coupled \({\mathcal{N}=2}\) gauge theories.  相似文献   

19.
20.
In this paper, we analyze cosmological consequences of the reconstructed generalized ghost pilgrim dark energy \({\mathcal {F}}(T,T_{\mathcal {G}})\) models in terms of redshift parameter z. For this purpose, we consider power-law scale factor, scale factor for two unified phases and intermediate scale factor. We discuss graphical behavior of the reconstructed models and examine their stability analysis. Also, we explore the behavior of equation of state as well as deceleration parameters and \(\omega _{\Lambda }-\omega _{\Lambda }^{'}\) as well as \(r-s\) planes. It is found that all models are stable for pilgrim dark energy parameter 2. The equation of state parameter satisfies the necessary condition for pilgrim dark energy phenomenon for all scale factors. All other cosmological parameters show great consistency with the current behavior of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号