首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Longitudinal flow past a thin body of revolution, part of whose surface is not known a priori and is to be determined from the tangential velocity specified there (free-flow boundary), is considered. The flow is assumed to be vortex-free, and the fluid to be ideal and incompressible. An integral equation for the form of the free surface is derived and is solved by the method of successive approximations. Conditions for the existence and uniqueness of the solution are given. A constant velocity flow along the free boundary (cavitation flow) is considered as a particular example of the general theory.  相似文献   

2.
Problems of streamline cavitation flow past a lattice were studied in [1–8] using the Kirchhoff scheme. In this scheme the magnitude of the velocity at the free surface is equal to the stream velocity behind the lattice, and the cavitation number is zero (for a lattice the relative velocity and the cavitation number are defined from the stream velocity behind the lattice). In [4, 7] a solution is given of the problem of flow past a lattice using a scheme with an Efros-Gilbargreturn streamline, which permits considering arbitrary cavitation numbers; however, a unique solution is not given. Some other streamline schemes are mentioned in [8].In the following we consider the cavitational flow of an ideal incompressible inviscid and weightless fluid past an infinite lattice of flat plates, using the streamline wake model previously utilized by Wu [9] in studying cavitational flow past an isolated obstacle. In accordance with this model, the streamlines which separate from the body and bound the cavity behind it pass into two curvilinear infinitely long walls, along which the pressure increases and approaches the pressure in the undisturbed stream.It is further assumed that in the hodograph plane there corresponds to the curvilinear walls a cut along some line and that the complex potential takes the same values at points lying on opposite sides of the cut. In particular, at the points of contact of the streamlines with the curvilinear walls the complex potential is the same. In the Wu scheme the latter condition leads to vanishing of the velocity circulation along the contour CABC1 (Fig. 1).In conclusion the author wishes to thank N. V. Yurtaeva for the accurately performed numerical work.  相似文献   

3.
A new numerical algorithm for attached cavitation flows is developed. A cavitation model is implemented in a viscous Navier–Stokes solver. The liquid–vapour interface is assumed as a free surface boundary of the computation domain. Its shape is determined with an iterative procedure to match the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient along the wall, is taken into account in updating the cavity shape iteratively. A series of computations are performed for the cavitating flows across three kinds of headform/cylinder bodies: conic, ogival and hemispheric heads. A range of cavitation numbers is investigated for each headform/cylinder body. The obtained results are reasonable and the iterative procedure of cavity shape updating is quite stable. The superiority of the developed cavitation model and algorithm is demonstrated. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A tracking method is presented for the modeling of partial and supercavitation. The velocity and pressure fields in the cavitating flow are computed by a Navier–Stokes solver using a pseudo-compressibility method. The cavity flow is computed from the velocity field by a tracking method based on a volume of fluid technique (VOF). The method is illustrated by several computations, two cases of partial cavitation on a hydrofoil and a case of a cavitating body emerging at a free surface.  相似文献   

5.
The problem of cavitation streamline flow located on the linear base of a lamina in a gravity solution current is solved by the systems of Ryabushinskii and Zhukovskii-Roshko. The method of fragment-continuum approximation of the boundary condition at the free boundary was used, in which this condition is exactly satisfied at a finite number of points. In this way the original problem comes down to a solution of a system of nonlinear equations whose solvability can be shown by the method of V. N. Monakhov [1]. The main consideration in the present work was given to a numerical solution of this system of equations on a computer. The problem is similar to the type for large Froude numbers, when the effect of weight on the flow is small, studied in [2-5]. In [6, 7] the flow problems were solved by the method of finite differences. The approximations of the boundary condition at the free boundary used earlier are based on the use of the smallness of these or other characteristics of flow. Thus, for example, the linearization of Levi-Chivit [8] is rightly used in the assumption of smallness of the change in the modulus and angle of inclination of the velocity at the free flow line; a stronger linearization is based on the requirement of smallness of additional velocities caused by an obstacle in comparison with the velocity of the undisturbed current [9]. In the given work the problems studied lead to a range of cavitation and Froude numbers when the gravitational force exerts a considerable effect on the main characteristics of the flow. As an example of one of the possible applications of the calculation, the solution of the problem of choice of the form of a body of zero buoyancy with a zone of constant pressure is given.Translated from Zhurnal Prikladnoi Mekhanik i Tekhnicheskoi Fiziki, No. 5, pp. 132–136, September–October, 1971.  相似文献   

6.
In the present study the effects of surface tension on the growth and collapse stages of cavitation bubbles are studied individually for both spherical and nonspherical bubbles. The Gilmore equation is used to simulate the spherical bubble dynamics by considering mass diffusion and heat transfer. For the collapse stage near a rigid boundary, the Navier–Stokes and energy equations are used to simulate the flow domain, and the VOF method is adopted to track the interface between the gas and the liquid phases. Simulations are divided into two cases. In the first case, the collapse stage alone is considered in both spherical and nonspherical situations with different conditions of bubble radius and surface tension. According to the results, surface tension has no significant effects on the flow pattern and collapse rate. In the second case, both the growth and collapse stages of bubbles with different initial radii and surface tensions are considered. In this case surface tension affects the growth stage considerably and, as a result, the jet velocity and collapse time decrease with increasing surface tension coefficient. This effect is more significant for bubbles with smaller radii.  相似文献   

7.
This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particular cases of a constant and a harmonically oscillating pressure gradient are then examined and some numerical results are illustrated graphically.  相似文献   

8.
浅埋圆形孔洞附近的半圆形凸起对SH波的散射   总被引:23,自引:0,他引:23  
刘殿魁  王国庆 《力学学报》2006,38(2):209-218
采用"契合"的思想,给出了地下孔洞与地面上的半圆形凸起地形对SH波散射问题的 解答. 将整个求解区域分割成两部分来处理. 其一为包括半圆形凸起地形在内的一个圆形区 域I,其余为区域II. 在区域I和II中分别构造位移解,并在两个区域的"公共边界"上 实施"契合". 在区域I中构造一个上半部边界应力为零,而其余部分位移、应力任意的驻 波解,在区域II中构造出半圆形凹陷和浅埋圆孔的散射波,且要求它满足水平界面上应力 为零的约束条件. 然后再通过移动坐标,满足"公共边界"的"契合"条件和地下孔洞的边 界条件,建立起求解该问题的无穷代数方程组. 最后,给出了分析例题和数值结果,并 对其进行了讨论.  相似文献   

9.
A method for computing the drag coefficient of a body in an axially symmetric, steady-state cavitation flow is presented. A ‘vortex ring’ distribution along the wetted body surface and along the cavity interface is assumed. Since the location of the cavitation interface is unknown a priori, an iterative procedure is used, where, for the first stage, an arbitrary cavitation interface is assumed. The flow field is then solved, and by an iterative process the location of the cavitation interface is corrected. Even though the flow field is governed by the linear Laplace equation, strong non-linearity resulting from the kinematic boundary conditions appears along the cavitation interface. An improved numerical scheme for solving the dual Fredholm integral equations is obtained by formulating high-order approximations to the singular integrals in order to reduce the matrix dimensions. Good agreement is found between the numerical results of the present work, experimental results and other solutions.  相似文献   

10.
Some exact expressions are derived to describe the temporal evolution of forced Rossby waves in a two-dimensional beta-plane configuration where the background flow has constant zonal-mean velocity. The meridional length scale of the problem is assumed to be small relative to the zonal length scale and so the long-wave limit of zero aspect ratio is taken. In the case where the background flow velocity is zero, an exact solution is obtained in terms of generalized hypergeometric functions. A late-time asymptotic approximation is obtained and it shows that the solution oscillates with time and its amplitude goes to zero in the limit of infinite time. In the case of a non-zero background flow velocity, the solution is evaluated using two different procedures which give two equivalent expressions in terms of different generalized hypergeometric functions. The late-time asymptotic behaviour is investigated and it is found that the solution approaches a steady state in the limit of infinite time.We also derive a solution in the form of an asymptotic series expansion for the more general situation where a Rossby wave packet is generated by a zonally-localized boundary condition comprising a continuous spectrum of wavenumbers or Fourier modes. The exact solutions found here can be used as leading-order solutions in weakly-nonlinear analyses and other studies involving more realistic configurations for time-dependent Rossby waves or wave packets.  相似文献   

11.
The free-surface shape and cusp formation are analyzed by considering a viscous flow arising from the superposition of a source/sink and vortex below the free surface where the strength of the source and vortex are arbitrary. In the analysis, Stokes’ approximation is used and surface tension effects are included, but gravity is neglected. The solution is obtained analytically by using conformal mapping and complex function theory. From the solution, shapes of the free surface are obtained, and the formation of a cusp on the free surface is discussed. Above some critical capillary number with a sink, the free-surface shape becomes singular and an apparent cusp should form on the free surface below a real fluid. On the other hand, no cusp would occur for sources of zero or positive strength. Typical streamline patterns are also shown for some capillary numbers. As the capillary number vanishes, the solution is reduced to a linearized potential flow solution.  相似文献   

12.
An exact solution is found for the equations for free convection in a planar horizontal layer of liquid with a constant temperature gradient at the boundaries. Two cases of boundary conditions for the velocity are considered: 1) the liquid is bounded by two solid planes, 2) the upper surface of the liquid is free, and the surface tension is a function of temperature.  相似文献   

13.
绕水翼超空化流动形态与速度分布   总被引:4,自引:0,他引:4  
为揭示超空化流场结构特性,利用高速全流场显示技术,观察了绕hydronautics水翼的超空化流动形态,并利用数字粒子图像测速仪(DPIV)测量了其速度分布. 在测量空穴内部流速分布时,采用空化流场中的空化泡作为示踪粒子来显示流动结构. 结果表明:随着空化数的降低,超空化流动显现出了明显的阶段特征,其中水汽混合相和汽相的分布决定了空化区域的形态与流速分布;空化区和主流区的汽液交界面处存在着较大的速度梯度;低速分布区域随着空化数的降低由水翼吸力面中后部向水翼下游移动;在空化区域内部,水汽混合区的速度相对较低,而汽相区则与主流区有着相近的速度分布.关键词超空化水翼、DPIV、高速摄像、空化形态、流速分布   相似文献   

14.
用高速摄像拍摄了90°锥头弹丸低速入水的空泡形态演变过程,全面讨论了不同入水冲击速度下空泡的闭合方式及其演变过程,分析了空泡闭合时间、闭合点水深和弹头空泡长度随入水速度的变化规律以及不同水深位置空泡直径的变化规律;研究了水幕闭合和近液面空泡收缩上升所形成的射流现象及其相互耦合作用过程,探讨了空泡深闭合后其壁面波动规律。结果表明:随着入水速度的增加,空泡分别发生准静态闭合、浅闭合、深闭合和表面闭合,每种闭合方式对应的一个速度区间;弹头产生空泡的临界入水速度为0.657 m/s;不同水深位置的空泡直径呈现非线性变化;随着水深的增加空泡扩张初速增大,空泡最大直径减小,扩张段缩短,收缩段延长;同一时刻水深越大空泡扩张收缩的加速度也越高;水幕闭合后会产生向上和向下两股射流,向下射流速度较大时会对弹丸运动产生影响;近液面空泡收缩上升时会产生强度正比于空泡体积大小和闭合点水深的射流,并与上两股射流相互耦合形成一股更强的向上射流;空泡深闭合后长度缩短和产生的向下射流使弹丸受力发生改变,弹丸速度因受力产生的变化带动了流体质点速度的波动,进而导致空泡壁面发生波动,壁面波动遵循空泡截面独立扩张原理。  相似文献   

15.
A method of the numerical investigation of cavitation flow past an arbitrary hydrofoil or a system of hydrofoils and flow past a hydrofoil in a channel or near a free boundary is developed on the basis of the generalized integral Green relation and direct iteration procedure. Emphasis is placed on the numerical analysis of smooth separation of the cavity boundary from a curvilinear surface. The comparison with available analytical and numerical solutions shows a high efficiency of the method proposed.  相似文献   

16.
One of the methods for solving a free or moving boundary problem is the use of Picard solvers which solve the geometry and the velocity field successively. When, however, the kinematic condition is used for updating the geometry in this technique, numerical stability problems occur for surface-tension-dominated flow. These problems are shown here to originate from the unstable integration of the local smoothing of the surface by surface tension. By an extension of the surface tension contribution to the flow field an implicit treatment of surface tension is obtained which overcomes these stability problems. The algorithm is applicable to both free and moving boundary problems, as will be shown by examples in this paper.  相似文献   

17.
Cavitation in hookean elastic membranes   总被引:1,自引:0,他引:1  
An exact solution to cavitation is found in tension of a class of Cauchy elastic membranes. The constitutive relationship of materials is based on Hookean elastic law and finite logarithmic strain measure. A variable transformation is used in solving the two-point boundary-value problem of nonlinear ordinary differential equation. A simple formula to calculate the critical stretch for cavitation is derived. As the numerical results, the bifurcation curves describing void nucleation and suddenly rapidly growth of the cavity are obtained. The boundary layers of displacements and stresses near the cavity wall are observed. The cata-strophic transition from homogeneous to cavitated deformation and the jumping of stress distribution are discussed. The result of the energy comparison shows the cavitated deformation has lower energy than the homogeneous one, thus the state of cavitated deformation is relatively stable. All investigations illustrate that cavitation reflects a local behavior of materials. Project supported by the National Natural Science Foundation of China (No. 19802012) the Scientific Research Foundation for Returned Overseas Chinese Scholars, and the Scientific Research Foundation for Key Teachers in Chinese Universities.  相似文献   

18.
In this article, the thermosolutal buoyancy and surface-tension convection flows are numerically studied with a fourth-order Runge-Kutta time-splitting finite element method. The physical model for a square cavity containing a top free surface and two different temperature and concentration side walls is described by the Navier-Stokes, energy and species concentration equations. On the track of flow pattern, the existence of surface tension will alter the evolution of the flow field and influence the local heat and mass transfer rates near the top free surface. In addition, the surface tension dominated flow field under a zero-gravity condition is studied for r = 0 and 1 to investigate the interaction between thermal surface tension and solutal surface tension. The results show that temperature and concentration make opposing contributions to the flow and display local variance in temperature and concentration distributions near surface boundary. Received on 29 July 1998  相似文献   

19.
回转体局部空泡绕流的非线性分析   总被引:12,自引:1,他引:12  
傅慧萍  李福新 《力学学报》2002,34(2):278-285
基于面元法, 通过在回转体和空泡壁面放置源汇,对回转体定长局部空泡的绕流问题进行了分析和讨论,并提出了求解回转体局部空泡绕流“正问题”的方法。计算结果表明:所给出的方法具有快速收敛的特征,第1次迭代和最终收敛时空泡壁面切向速度的误差不超过5%;随着回转体面元总数N的增加,局部空泡的空泡数σ趋于稳定;通过比较可知,该方法得到的理论估算值与实测值的一致性较好。  相似文献   

20.
The purpose of this research is to consider the flow through a cascade of bluff bodies, behind which there exist cavities, by using the free streamline theory. When the wake extends to infinity, both the free surface and the velocity on the free surface are unknown and the cavitation number cannot be specified arbitrarily. Given the geometry of the cascade, a numerical method is described in which we obtain the shape of the free surface and the cavitation number. We obtain the relationship between the contraction coefficient, cavitation number and drag coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号