首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied silica gel by sol–gel technique for the preparation of new dye-laser materials. Silica gel rods with dimension 50 × 10 mm2 have been prepared successfully without breaking. It shows high transparency and good mechanical strength. Tetraethylorthosilicate (TEOS), formamide in molar ratio (0.25:0.70), 80 ml ethanol, 20 ml dimethylformamide (DMF), 10 ml water, hydrochloric acid as a catalyst (at pH 6), and 0.5 ml silicone defoaming agent/surfactant have been used. The synthesis has been carried out in a beaker and the reaction mixture is caste in to the flat bottom glass tubes at 40 °C after thoroughly mixing of all the ingredients. These complex reactions, that carried out by hydrolysis and condensation in the silica gel formation show less gel time ∼8–10 h at 40 °C. Coumarin. 440 dye was doped during the preparation of all the ingredients solution mixture. It has been observed that that the compatibility of Nile blue dyes with silica-gel promise good homogeneity with transparency.  相似文献   

2.
Single phase zinc ferrite (ZnFe2O4) nanoparticles have been prepared by the coprecipitation method without any subsequent calcination. The effects of precipitation temperature in the range 20–80 °C on the structural and the magnetic properties of zinc ferrite nanoparticles were investigated. The crystallite size, microstructure and magnetic properties of the prepared nanoparticles were studied using X-ray diffraction (XRD), Fourier transmission infrared spectrum, transmission electron microscope (TEM), energy dispersive X-ray spectrometer and vibrating sample magnetometer. The XRD results showed that the coprecipitated nanoparticles were single phase zinc ferrite with mixture of normal and inverse spinel structures. Furthermore, ZnFe2O4 nanoparticles have the crystallite size in the range 5–10 nm, as confirmed by TEM. The magnetic measurements exhibited that the zinc ferrite nanoparticles synthesized at 40 °C were superparamagnetic with the maximum magnetization of 7.3 emu/g at 10 kOe.  相似文献   

3.
Mn ions were implanted into metal organic chemical vapour deposition (MOCVD)-grown GaN with dose ranging from 1014 to 5×1016 cm−2. Isochronal annealing at 800 and 850 °C has been carried out after implantation of the samples. Photoluminescence measurements were carried out on the implanted samples before and after annealing. A peak found at 3.34 eV in the spectra of implanted samples after annealing at 850 °C is attributed to the stacking faults. Blue and green luminescence bands have been observed suppressed and an oxygen-related peak appeared at 3.44 eV in the PL spectra. The suppression of blue and green luminescence bands has been assigned to dissociation of VGaON complex. Near-band-edge (NBE) peak exhibited a blue shift after 800 °C anneal and then red shift to restore its original energy position when annealed at 850 °C.  相似文献   

4.
Amorphous indium gallium zinc oxide (a-IGZO) semiconductor thin films and transistors were deposited on alkali-free glasses by the sol–gel route. The atomic ratio of In:Ga:Zn in the solution was 0.7:0.3:1. In this study, the effects of annealing temperature on the structural, surface condition, optical transmittance, and electrical resistivity of a-IGZO semiconductor thin films were investigated. GIXRD measurements and TEM-NBD analysis indicated that all annealed IGZO thin films had an amorphous phase structure. The dried IGZO sol–gel films annealed at a temperature higher than 425 °C had a flat surface and exhibited high transparency (>89%) in the visible region. According to results from TGA, FT-IR and XPS, the residual organic compounds in the dried IGZO sol–gel films were completely removed at the annealing temperatures higher than 450 °C. Therefore, we chose the 450 °C annealed thin film as the active channel layer in the bottom-gate, bottom-contact (BGBC) thin-film transistor (TFT) in the present study. Current–voltage (IV) characteristics of the 450 °C annealed a-IGZO TFT revealed that it operated in n-type behavior with a positive threshold voltage (enhancement mode).  相似文献   

5.
In order to study the effect of mixing dye molecules in ferroelectric liquid crystals, we have investigated two ferroelectric liquid crystal samples CS1016 and Felix 17/000 along with their mixture with Anthraquinone dye. The measurements have been made in the frequency range 100 Hz-10 MHz, with the variation of temperature from 30 to 90 °C. The dielectric behaviour of dye mixed CS1016 is quite different from that of Felix 17/000. This different behaviour has been explained by determining other parameters like distribution parameter, dielectric strength and relaxation frequency, etc. The different nature shown by two different samples has also been explained by electro-optical measurements.  相似文献   

6.
Due to high resistivity and low microwave losses, gadolinium iron garnets (GdIG) are useful materials for non-reciprocal devices such as circulators or isolators. Keeping the miniaturization and cost reduction in mind, the trend is to modify the conventional methods of preparation of samples. In this connection we have synthesized nanocystalline GdIG by using the Microwave Hydrothermal method at 160 °C/45 min. As synthesized powders were characterized by using X-ray diffraction (XRD), transmission electron microscopy and Fourier Transform Infrared Spectroscopy. XRD patterns show the formation of a garnet phase with crystallite size varying between 19 nm and 40 nm. Differential Thermal Analysis studies were also carried out on the nanopowders. The powders were densified at a lower sintering temperature of 1100 °C/45 min using a microwave sintering method. The sintered samples were characterized by XRD and atomic force microscopy. The frequency dependence of complex permittivity and ferromagnetic resonance were measured in the Ka band frequency (27–40 GHz). Magnetic properties were also measured at room temperature.  相似文献   

7.
Nanoparticles of nickel–zinc ferrite have been prepared by using the citrate precursor method. According to scanning electron microscopy (SEM), the particle size is nanometric for the powder calcined at 350 °C/3.5 h. The phase formation has been studied by applying different calcining atmospheres, such as air and argon. Pure Ni–Zn ferrite has been observed when calcined in argon at the temperature of 350 °C. Hysteresis analyses have been done with magnetization of 53.01 emu/g at 350 °C and obtaining 84.62 emu/g at 1100 °C due to an optimization of domains formation at high temperature. Measures of reflectivity of Ni–Zn ferrite/epoxy composite have been obtained below 21% at 350 °C and above 96% at 1100 °C with a coercive field of 26.61 Oe. Low value of coercive field increased the mobilization of domains wall and increased the radiation absorption.  相似文献   

8.
The novel low temperature combustion synthesis (LCS) method for the preparation of nanocrystalline W-type BaW hexaferrite i.e. BaNi2Fe16O27 has been carried out by citrate precursor using the sol-to-gel (S–G) followed by gel-to-nanocrystalline (G–N) conversion. Decomposition behaviors and the phases associated therein are investigated by means of thermal analysis (DTA/DTG/TG) and XRD, respectively. Atomic absorption spectroscopy (AAS) has been used to determine the elemental analysis in different conditions. Surface morphology of the nonporous ultra fine particles have been examined by SEM. The TEM micrographs show that the particles of the size of 10 nm were seemed to be agglomerated in the ‘as synthesized’ condition. Room temperature Fe-57 Mossbauer spectrum, MS has showed doublet of ‘as synthesized’ nanocrystalline powder that indicates the superparamagnetic behavior of the material. This effect is further confirmed by vibrating sample magnetometer (VSM) wherein it was noticed that the magnetic field (10 KG max) did not have any effect on the material. The material was annealed at 400, 700 and 1000 °C in the furnace for 4 h. The grain size is found to increase from 10 to 70 nm after annealing at 1000 °C for 4 h. MS after annealing at 700–1000 °C for 4 h, showed that the doublets of ‘as synthesized’ is further resolved into broad sextets due to the presence of both superparamagnetic and ferrimagnetic particles, in the wide size range from 10 to 70 nm. Only slight increase in particle size (from 10 to 15 nm) is noticed after the heat-treatment for 1–3 and 5 min in microwave oven (2.45 GHz with 760 W) but with predominant phase changes. TEM after the heat treatment revealed the presence of microcrystalline nature of grains of the size ∼70 nm. The transformation of the magnetic properties i.e. from superparamagnetic to ferrimagnetic behaviour after heating in microwave oven has been revealed by hysteresis loops under VSM study. The saturation magnetisation, Ms after heat treatment has been seen to increase from 26.7 to 44.5 emu/gm. Remanence and coercivity have also increased four and seven times, respectively. Ms of the as synthesised hexaferrite nano powder and heat-treated powder in microwave oven for 5 min show doublets, confirming the presence of superparamagnetic relaxation in the nano particles as only slight increase in the particle size is associated with the heat treatment.  相似文献   

9.
Single crystal of l-asparagine cadmium bromide (LACB), a semiorganic nonlinear optical material was grown by solution growth method at the room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis and it was found to be the structure of the crystal was belongs to orthorhombic system. The UV–vis–NIR spectroscopic study revealed that the crystal has good optical transparency and lower cut off wavelength was found to be 230 nm. The presence of functional group was identified by Fourier transform infrared (FTIR) analysis. The chemical composition was confirmed by elemental analysis. The mechanical strength was studied and found to be 100 g by using Vicker's micro hardness tester. The thermal stability was found to be 218 °C by using TGA and DTA analysis. The second harmonic generation efficiency was carried out by using Kurtz–Perry powder technique and it was found to be 3.4 times higher than KDP crystal.  相似文献   

10.
Copper indium disulphide (CuInS2) is an efficient absorber material for photovoltaic applications. In this work Zn (0.02 and 0.03 M) doped CuInS2 thin films are (Cu/In = 1.25) deposited onto glass substrates in the temperature range 300–400 °C. XRD patterns depict, Zn-doping facilitates the growth of CuInS2 thin films along (1 1 2) preferred plane and other characteristic planes. Optical studies show, 90% of light transmission occurs in the IR regions; hence Zn-doped CuInS2 can be used as an IR transmitter. The absorption coefficient in the UV–vis region is found to be in the order of 104–105 cm−1. Optical band gap energies increase with increase of temperatures (0.02 M – (1.93–2.05 eV) and 0.03 M – (1.94–2.04 eV)). Well defined, broad Blue and Green band emissions are exhibited. Resistivity study reveals the deposited films exhibit semiconducting nature. Zn species can be used as a donor and acceptor impurity in CuInS2 films to fabricate efficient solar cells and photovoltaic devices.  相似文献   

11.
The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu–Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350–650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.  相似文献   

12.
In situ formation of tungsten carbide in the matrix of FCC nickel has been achieved by carburizing of the electrodeposited Ni-W alloy coatings. The size of the carbide particles ranges between 100 and 500 nm. The carbide phase is also present in the form of very small precipitates inside the nickel grains. The size of such precipitates is between 10 and 40 nm. The carburizing environment was created by introducing a flowing mixture of vaporized 95.5% alcohol (0.25 ml/min, liquid) and argon (0.5 L/min, gas) into the carburizing furnace. Supersaturated nature of electrodeposited amorphous and nanocrystalline alloys, in addition to high diffusivity, have been attributed for the formation of carbide phase in the deposits at a temperature range of 700-850 °C. The carbide-metal interface is clean and the composite coatings are compact. Hardness values up to about 1100 KHN are achieved. Hardness increases with tungsten content and carburizing temperature.  相似文献   

13.
In many common Al–Mg–Si alloys (6000 series) intermediate storage at or near ‘room temperature’ after solutionising leads to pronounced changes of the precipitation kinetics during the ensuing artificial ageing step at ≈180 °C. This is not only an annoyance in production, but also a challenge for researchers. We studied the kinetics of natural ‘room temperature’ ageing (NA) in Al–Mg–Si alloys by means of various different techniques, namely electrical resistivity and hardness measurement, thermoanalysis and positron lifetime and Doppler broadening (DB) spectroscopy to identify the stages in which the negative effect of NA on artificial ageing might appear. Positron lifetime measurements were carried out in a fast mode, allowing us to measure average lifetimes in below 1 min. DB measurements were carried out with a single detector and a 68Ge positron source by employing high momentum analysis. The various measurements show that NA is much more complex than anticipated and at least four different stages can be distinguished. The nature of these stages cannot be given with certainty, but a possible sequence includes vacancy diffusion to individual solute atoms, nucleation of solute clusters, Mg agglomeration to clusters and coarsening or ordering of such clusters. Positron lifetime measurements after more complex ageing treatments involving storage at 0 °C, 20 °C and 180 °C have also been carried out and help to understand the mechanisms involved.  相似文献   

14.
Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol–gel process. The thin films with various Fe/Sr molar ratios of 8–12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.  相似文献   

15.
l-alanine 2-furoic acid (LA2FA), a novel organic third order nonlinear optical material was grown by slow solvent evaporation technique at room temperature. The grown single crystals were characterized by XRD, spectral, thermal, optical, dielectric and third order nonlinear properties. LA2FA crystallizes into triclinic system with the space group P1. The cell parameters are found to be a = 3.97 Å, b = 7.09 Å, c = 10.69 Å, α = 73.61°, β = 83.57°, γ = 84.21° and V = 286 Å3. The modes of vibrations of different molecular groups present in LA2FA were identified by FTIR studies. The optical transparency of the grown crystals was investigated by UV–visible spectrum. The absorption spectrum reveals that the crystal has a high UV cut off of 245 nm and photonic band gap of 2.5 eV. The scanning electron microscope (SEM) study has been carried out to determine the surface morphology of the grown crystal. The thermal behavior of the crystal investigated using thermo gravimetric (TG) and differential thermal analysis (DTA) indicates that the material does not decompose before melting. The third order NLO property was studied in detail by z-scan technique.  相似文献   

16.
Experimental investigations on a sodium ion conducting gel polymer electrolyte nanocomposite based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with silica nanoparticles are reported. The gel nanocomposites have been obtained in the form of dimensionally stable, transparent and free-standing thick films. Physical characterization by X-ray diffraction (XRD), Fourier transform Infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) have been performed to study the structural changes and the ion-filler-polymer interactions due to the dispersion of SiO2 nanoparticles in gel electrolytes. The highest ionic conductivity of the electrolyte has been observed to be 4.1 × 10−3 S cm− 1 at room temperature with ~ 3 wt.% of SiO2 particles. The temperature dependence of the ionic conductivity has been found to be consistent with Vogel-Tammen-Fulcher (VTF) relationship in the temperature range from 40 to 70 °C. The sodium ion conduction in the gel electrolyte film is confirmed from the cyclic voltammetry, impedance analysis and transport number measurements. The value of sodium ion transport number (tNa+) of the gel electrolyte is significantly enhanced to a maximum value of 0.52 on the 15 wt.% SiO2 dispersion. The physical and electrochemical analyses indicate the suitability of the gel electrolyte films in the sodium batteries. A prototype sodium-sulfur battery, fabricated using optimized gel electrolyte, offers the first discharge capacity of ~165 mAh g− 1 of sulfur.  相似文献   

17.
Protein microspheres have been prepared by sonicating a mixture of pure fragrant oil (amyl acetate (AA)) with an aqueous protein (bovine serum albumin) solution. The prepared protein spheres are nano- to micrometer sized with an encapsulation efficiency of approx. 97% for the AA present on the surface and inside the BSA capsule. Containers were found stable for more than 6 months when stored sealed at 4 °C and 20 °C. For the release profile measurements, we used a simple, automated and direct method. We continuously weighed the encapsulated microspheres and measured the evaporation rates. The release profiles at 15 °C and 25 °C display two different evaporation rates. The higher rate is the sum of a few evaporation rates, including water molecules, while the slower rate is due to the evaporation of pure AA. The changes in the evaporation rates occur upon the collapse of the container. This event coincides with the full evaporation of water. For morphological characterization we dyed the AA with Nile red, and used SEM, ESEM, Cryo-SEM, light microscopy, and confocal laser scanning microscopy measurements.  相似文献   

18.
We propose and demonstrate strain and temperature discrimination technique using a single fiber Bragg grating (FBG) written in the core of an erbium doped fiber. We observed that amplified spontaneous emission power varying linearly from the erbium doped fiber with temperature which determines temperature changes and strain is estimated by subtracting the wavelength shift due to temperature change, from the measured shift corresponding to the dip in the transmission spectrum of the FBG. A simple and compact FBG sensor is presented with improved rms errors of 21.2 μ? and 1 °C over ranges of 0–800 μ? and 40–95 °C, respectively. The sensor is shown to have strain and temperature sensitivity of 0.8 pm/μ? and 12 pm/°C.  相似文献   

19.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

20.
We deposited SrCu2O2 (SCO) films on sapphire (Al2O3) (0 0 0 1) substrates by pulsed laser deposition. The crystallographic orientation of the SCO thin film showed clear dependence on the growth temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed that the film deposited at 400 °C was mainly oriented in the SCO [2 0 0] direction, whereas when the growth temperature was increased to 600 °C, the SCO film showed a dominant orientation of SCO [1 1 2]. The SCO film deposited at 500 °C was obvious polycrystalline, showing multi peaks from (2 0 0), (1 1 2), and (2 1 1) diffraction in the XRD spectrum. The SCO film deposited at 600 °C showed a band gap energy of 3.3 eV and transparency up to 80% around 500 nm. The photoluminescence (PL) spectra of the SCO films grown at 500 °C and 600 °C mainly showed blue-green emission, which was attributed to the intra-band transition of the isolated Cu+ and Cu+–Cu+ pairs according to the temperature dependent-PL analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号