首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free space optics (FSO) technology provides a promising solution for future broadband networks, offering high data transmission compared to RF technology. This work is focused on investigating the performance of an FSO system with OFDM and QAM. A 10 Gbps data stream is transmitted using a 4-level QAM sequence through the FSO system under different atmospheric conditions. Results indicate that the integration of SOA prolongs the maximum achievable distance with acceptable SNR to 185 km under clear weather conditions whereas under atmospheric fog, the maximum distance is extended to 2.5 km.  相似文献   

2.
Free space optics (FSO) has attracted a lot of attention for a variety of applications in telecommunications area, and it is dream of every researcher and telecommunication society to make it a real alternative solution for the last mile problem, to replace fiber optics. FSO is much preferred because of its low maintenance cost and deployment time. FSO with single-beam system is vulnerable to atmospheric attenuation, so to overcome this, a multiple-beam FSO transceiver system has become prominent and is usually used. In this paper, average rain attenuation is evaluated from the collected rain intensity data which are collected for a period of seven months, and implemented in the study concerning results relating link distance, and received optical power of using multiple-beam FSO system in tropical rainy weather. Comparison is made in terms of received optical power, geometrical losses, atmospheric losses, and bit error rate (BER) on using different number of optical beams, based on simulation at data rate of 1 Gb/s. From the results it is clear that the quality of received power is improved by using up to four beams, along with link distance up to 1141.2 m as compared to one-beam, two-beam, and three-beam, with link distances 833.3 m, 991.0 m, 1075.4 m, respectively.  相似文献   

3.
The demand for high data rate, security and reliable communication is driving the development of free space optic communication (FSO) technology. The atmospheric effects such as scintillation, absorption and scattering severely affect the availability and range of the FSO system. The atmospheric rain absorbs and scatters the laser beam energy resulting in attenuation of the propagating signal. Initial development of FSO technology primarily used wavelength from infrared spectrum. In the recent years, the interest in visible light carrier for FSO applications is consistently increasing. In this paper, the effect of rain over two optical wavelengths from the visible spectrum i.e. 532 nm and 655 nm has been experimentally evaluated and results for the specific rain attenuation at 532 nm and 655 nm wavelengths have been compared.  相似文献   

4.
Free space optics (FSO) link at high transmission rate is delimited due to its perceptivity to diversified surroundings especially in hilly regions. A demonstration of CDMA-FSO coherent detection system is reported in this work to achieve a prolonged 10 Gbps-FSO link with acceptable SNR under the impact profound haze, rain and fog environment. Further, the work is extended to weigh the proposed CO-CDMA-OSSB-FSO transmission system against OFDM-OSSB-FSO direct detection system 0045 and 0050.  相似文献   

5.
Free space optics (FSO) is a promising communication technique for various types of services in the optical access network. Single beam FSO system in tropical rainy weather is vulnerable to atmospheric rain attenuation, so it is necessary to have precise power law parameters of rain attenuation in tropical regions. In this study, the power law parameters k, and α are estimated as 2.03 and 0.74, respectively for the FSO applications in tropical South-East Asian weather. These parameters were evaluated by using least square mean equation (LSME) method with Levenberg–Marquardt optimization based on the one year collected heavy rain data. The obtained parameter values for tropical weather are contributed to improve link performance for high-speed networks.  相似文献   

6.
Free Space Optics (FSO) link is extremely responsive to the diverse climate state of affairs that bound the FSO range. A demonstration of fading resistant FSO system using a simulated test-bed employing OFDM scheme is reported in this work to realize the prolonged FSO link with acceptable SNR and BER with the highest stream rate of 5 Gb ps under the impact of diverse weather conditions. Simulations point toward that the proposed hybrid OFDM-FSO transmission system incorporating OTSB- and OSSB-schemes promises significantly enhanced FSO link compared to conventional FSO systems.  相似文献   

7.
Free space optics (FSO) has the capacity to be a vital element for the design of ubiquitous and reliable systems for next-generation networks owing to its large bandwidth and high data rate support. The last-mile issue finds an efficient solution in FSO in scenarios where fiber deployment is not feasible. However the FSO link is prone to fluctuations in optical signal strength due to various weather conditions and atmospheric turbulence. In this paper, an 80 (8 × 10) Gbps RZ-DPSK based WDM-FSO system is analyzed based on its performance on weather conditions viz. very clear, drizzle, haze, thin fog, moderate fog and thick fog. Link-margin analysis is also done. The turbulence model employed is the Gamma–Gamma fading model. The system is simulated on OptiSystem 14.0.  相似文献   

8.
Free-space optics (FSO) has the combined features of most dominated telecommunication technologies: wireless and fiber optics. Many of the aspects of FSO are related to fiber optics with an important difference of transmission medium which is air/free space rather than the glass of the fiber-optic cable. Inter-satellite optical wireless communication systems (IsOWC), one of the important applications of FSO/WSO technology, will be deployed in space in the near future as such systems provide a high bandwidth, small size, light weight, low power and low cost alternative to present microwave satellite systems. In this paper, we have designed a model of IsOWC system using OPTI-SYSTEM™ simulator to establish an inter-satellite link (ISL) between two satellites estranged by a distance of 1000 km at data rate of 2.5 Gbps which is not reported in previous investigated works.  相似文献   

9.
Bindiya Jain 《Optik》2010,121(21):1948-1954
This paper reports the effects of pre- and post-compensation using CRZ modulation format in long-haul WDM optical transmission link using wavelengths in three bandwidths viz. 1537.4; 1550; 1562.6 nm at per channel bit rates of 10 Gbit/s. It has been investigated here that optimization of dispersion map results in improved management of nonlinear effects in long-haul light wave systems operating in the quasi-linear regime. In addition, pre- and post-dispersion compensation was applied at the transmitter and receiver depending on the signal wavelength, which resulted in improvement of performance metrics viz. Q2 (dB), BER and OSNR over longer transmission distances. It is reported here that optimum values of Q2 dB of 17.1 dB, BER of 8.4933e−015 and OSNR of 30.1 dB are obtained at 1550 nm at a transmission distance of 7360 km with pre- and post-compensation using CRZ modulation format.  相似文献   

10.
This work is focused to carry out the investigation of fading resistant coherent detected OFDM-FSO system using a simulated test-bed employing OSSB- and ODSB-schemes under clear weather conditions. The data rate transmission is enhanced to 1 Tbps range by employing the coherent detection scheme over a prolonged FSO link as compared to direct detection based OFDM-FSO system (Sharma [18]). Further, the simulated work is also demonstrated for OSSB- and ODSB-schemes to report the best scheme to be used in CO-OFDM-FSO systems to achieve acceptable BER at high data rate transmission (up to1 Tbps).  相似文献   

11.
Free space optical (FSO) communication is an upgraded supplement to the existing wireless technologies. FSO technology provides vast modulation bandwidth, unlicensed spectrum, cost effective deployment, low power consumption and less mass requirement. Today, researchers are preliminary focused to use the free space communication systems for inter satellites links. In this paper, the performance analysis of FSO communication link in weak atmospheric turbulence has been analyzed for different atmospheric transmission windows using OOK modulation. The analysis has been done using bit error rate as the performance metric. The effect of attenuation on the link performance has been investigated by varying distance between transmitter and receiver for a given power and data rate. Further, BER performance analysis has been carried out for varying data rate and transmitted power. Also, the effect of attenuation on received optical power has been studied. The work has been performed in OptSim environment.  相似文献   

12.
Free Space Optics (FSO) is an emerging line-of-sight technology intending to provide last-mile solution to the network problem where fiber technology is not feasible. The use of Wavelength Division Multiplexing (WDM) technology for FSO is inspired due to the demand for broadband communication. This technique has brought a revolution because the system data capacity is enhanced by simply adding more number of channels and reducing the channel spacing without having the need of more than one FSO link. By reducing the channel spacing to an appropriate level, Dense Wavelength Division Multiplexing (DWDM) based FSO systems are also be attained and are reported by various research works. FSO finds applications in vast areas like backhaul networks for cellular communication, disaster recovery, LAN–LAN connectivity, high-definition TV, MAN-extension, video transmission, medicine industry and surveillance. However, its usage is limited due to the serious challenges of link vulnerability to weather and atmospheric turbulence-induced fading. This paper is based on a WDM-FSO system. An 8-channel WDM based FSO system is proposed and performance is evaluated on widely accepted modulation schemes under weak, moderate and strong turbulence conditions. Gamma–Gamma fading model is employed for atmospheric turbulence modelling. The system is simulated on OptiSystem 14.0.  相似文献   

13.
We propose a novel method for simultaneous transmission of OC-192 (9.95328 Gbps) digital data and 60 GHz RF generation in a Standard Single Mode Fiber (SSMF) link utilizing Stimulated Brillouin Scattering (SBS). The system comprises of a 1550 nm DFB Laser diode, Mach Zehnder modulator (MZM), 50 km SSMF and Optical receiver. The receiver includes laser diode for optical pump, a regenerator for data retrieval and a RF bandpass filter for RF generation. This system requires minimum number of RF and optical components for the generation of 60 GHz RF. The remotely generated 60 GHz RF signal may be used for wireless transmission of data. The entire link is simulated in Optisystem software to analyze the system performance.  相似文献   

14.
This paper presents a theoretical design of highly nonlinear microstructure optical fiber with dispersion-flat characteristics. The APSS™ 2.3 software based on the finite difference method with perfectly matched boundary conditions is used to simulate the properties of the proposed microstructure optical fiber. According to simulation, the proposed fiber warrants a high nonlinear coefficient of the order 41 W−1 km−1 and a low dispersion of 0.25 ps/nm/km at 1550 nm wavelength. It assumes a dispersion-flat characteristic of 0 ± 0.50 ps/nm/km in a 1450-1620 nm wavelength range centering 1550 nm wavelength with a modest number of design parameters.  相似文献   

15.
FSO or free space optics is a familiar name used in a wide array of applications in the area of telecommunications. Due to its features of low maintenance cost and deployment time, most of the applications consider FSO as the alternative solution for appropriately replacing fiber optics. In this work, we have designed 100 Gbps FSO system by combining mode division multiplexing (MDM) and optical code multiple access scheme (OCDMA). Ten channels, each carrying 10 Gbps data, are transported over 8 km FSO link by using MDM of two Laguerre Gaussian modes and random diagonal codes. Moreover, the performance of proposed MDM–OCDMA–FSO system is also investigated under atmospheric turbulences.  相似文献   

16.
In order to analyze the effect of spectral dependencies of radiation-induced attenuation in polarization maintaining fibers on interferometric fiber optic gyroscopes at near-infrared wavelengths, phosphorus-doped, germanium-doped and pure-silica-core fibers were exposed to a 60Co γ-radiation source, as well as their spectral properties were compared and interpreted by color centers theory involving total dose-dependent infrared absorption bands. Based on testing and comparing the radiation-induced attenuation spectra, the loss variation and mean wavelength shift in fibers at 1300 nm and 1550 nm wavelengths are discussed. Finally, the random walk coefficient degradation and scale factor error induced by spectral dependencies of radiation-induced attenuation in fibers are verified.  相似文献   

17.
We report on a highly birefringent holey fiber for broadband dispersion compensation covering the S, C, and L telecommunication bands i.e. wavelength ranging from 1460 to 1625 nm. The finite element method with circular perfectly matched layer boundary condition is used to investigate the guiding properties. Numerical analysis demonstrates that it is possible to obtain negative dispersion coefficient of about −470 to −850 ps/nm/km over S to L-bands and a relative dispersion slope perfectly matched with single mode fiber (SMF) of about 0.0036 nm−1 at 1550 nm. At the same time birefringence of the order 2.53 × 10−2 is realized at 1550 nm wavelength. Owing to superior optical properties of the proposed holey fiber, this can be a promising candidate for broadband dispersion compensation and sensing applications.  相似文献   

18.
In this paper, we propose and numerically demonstrate a highly birefringent microstructure optical fiber which shows negative dispersion coefficient of about −288 to −550 ps/(nm km) covering S to L wavelength bands and −425 ps/(nm km) at the excitation wavelength 1550 nm. This proposed design successfully compensate the dispersion covering S to L communication bands ranging from 1460 to 1625 nm along with relative dispersion slope (RDS) perfectly matched to that of single mode fiber of about 0.0036 nm−1. Apart from dispersion compensation, the designed MOF offers high birefringence of 2.94 × 10−2 at 1550 nm and better compensation ratio with design simplicity due to circular air-holes in the fiber cladding.  相似文献   

19.
In this paper, we present a photonic crystal fiber based on hexagonal structure for improved negative dispersion as well as high birefringence in the telecom wavelength bands. It is demonstrated that it is possible to obtain negative dispersion coefficient of −712 ps/(nm km) and relative dispersion slope (RDS) perfectly match to that of single mode fiber (SMF) of about 0.0036 nm−1 at the operating wavelength 1550 nm. The proposed fiber exhibits high birefringence of the order 2.11 × 10−2 with nonlinear coefficient about 57.57 W−1 km−1 at 1550 nm. Moreover, it is confirmed that the designed fiber successfully operates as a single mode in the entire band of interest.  相似文献   

20.
Optical loss measurements in femtosecond laser written waveguides in glass   总被引:1,自引:0,他引:1  
The optical loss is an important parameter for waveguides used in integrated optics. We measured the optical loss in waveguides written in silicate glass slides with high repetition-rate (MHz) femtosecond laser pulses. The average transmission loss of straight waveguides is about 0.3 dB/mm at a wavelength of 633 nm and 0.05 dB/mm at a wavelength of 1.55 μm. The loss is not polarization dependent and the waveguides allow a minimum bending radius of 36 mm without additional loss. The average numerical aperture of the waveguides is 0.065 at a wavelength of 633 nm and 0.045 at a wavelength of 1.55 μm. In straight waveguides more than 90% of the transmission loss is due to scattering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号