首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laxmi Shiveshwari 《Optik》2011,122(17):1523-1526
We consider the oblique propagation of electromagnetic waves in one-dimensional plasma dielectric photonic crystals, the superlattice structure consisting of alternating plasma and dielectric materials using transfer matrix method. Our results show that photonic band gaps for all polarizations can be obtained in one-dimensional plasma dielectric photonic crystals. These structures can exhibit a new type of band or gap, for the incidence angles other than normal incidence, near frequencies where the electric permittivity of the plasma layer changes sign. This new band or gap arises, from the dispersive properties of the plasma layer, only for TM polarized waves and its width increases with the increasing angle of incidence. This differential behaviour under polarization can be utilized in the design of an efficient polarization splitter. The band characteristic is affected by the plasma width, the plasma density, dielectric width, the dielectric constant of the dielectric medium and angle of incidence.  相似文献   

2.
We theoretically study the effect of the dielectric background in two-dimensional metallo-dielectric photonic crystals. The metallo-dielectric photonic crystal consists of a square lattice of circular metallic rods embedded into a dielectric background. We calculate the photonic band structure by means of the plane wave method and the frequency-dependent finite-difference time-domain method. The transfer matrix method is used to obtain the reflectivity characteristics. Results show that the band structures shift toward lower frequencies and become flatter when the background dielectric constant increases. In addition, degeneracy can be broken and new gaps can be created in function of the dielectric background. We also found that the relative band gap width Δω/ωg grows with increasing background dielectric constant and widths as large as 42.3% and 13.8% for the second and third band gaps can be achieved for εb = 9. We have investigated the origin of the new gap in these structures by studying the electric-field distribution at the band edges for the first five modes.  相似文献   

3.
章海锋  刘少斌  孔祥鲲 《物理学报》2011,60(5):55209-055209
采用时域有限差分法(FDTD)中的分段线性电流密度卷积(PLCDRC)算法研究了TM波入射时二维非磁化等离子体光子晶体的禁带特性.从频域角度分析得到微分高斯脉冲的透射系数,并讨论该光子晶体的介质圆柱的介电常数、晶格常数、介质圆柱半径,周期常数和等离子体参数对其禁带特性的影响.结果表明,增加周期常数和等离子体碰撞频率不会改变禁带宽度,增加介质圆柱的相对介电常数和等离子体频率可以展宽禁带的宽度. 当填充率一定时,减小介质圆柱的半径和晶格常数可以实现禁带的拓展. 关键词: 等离子体 光子晶体 禁带 PLCDRC算法  相似文献   

4.
The tunable two-dimensional photonic crystals band gap, absolute photonic band gap and semi-Dirac point are beneficial to designing the novel optical devices. In this paper, tunable photonic band gaps structure was realized by a new type two-dimensional function photonic crystals, which dielectric constants of medium columns are functions of space coordinates. However for the two-dimensional conventional photonic crystals the dielectric constant does not change with space coordinates. As the parameter adjustment, we found that the photonic band gaps structures are dielectric constant function coefficient, medium columns radius, dielectric constant function form period number and pump light intensity dependent, namely, the photonic band gaps position and width can be tuned. we also obtained absolute photonic band gaps and semi-Dirac point in the photonic band gaps structures of two-dimensional function photonic crystals. These results provide an important theoretical foundation for design novel optical devices.  相似文献   

5.
章海锋  刘少斌  孔祥鲲 《物理学报》2011,60(2):25215-025215
采用等离子体的分段线性电流密度卷积时域有限差分算法研究了横磁波入射时具有单一线缺陷的二维非磁化等离子体光子晶体的缺陷模特性. 从频域角度分析得到微分高斯脉冲的透射系数,并讨论该光子晶体的晶格常数、介质圆柱半径、周期常数、缺陷层参数和等离子体参数对缺陷模特性的影响. 结果表明,改变周期常数、缺陷层位置和等离子体碰撞频率不会改变缺陷模的频率,改变缺陷层介质圆柱的相对介电常数、半径和缺陷层到介质层的中心距离可以在不改变禁带宽度的前提下实现对缺陷模的调节,改变晶格常数、介质圆柱半径和等离子体频率能同时实现对禁带宽度和缺陷模的调节. 关键词: 等离子体 光子晶体 缺陷模 时域有限差分算法  相似文献   

6.
磁导率对二维蜂窝结构光子晶体带隙的影响   总被引:1,自引:1,他引:0  
关春颖  苑立波 《光子学报》2007,36(10):1808-1812
利用平面波展开法对二维六角晶格结构磁性光子晶体的带隙特性进行了研究,给出其能带结构分布图,并与非磁性介质构成的光子晶体进行了比较.结果表明,由磁性材料构成的光子晶体更易出现带隙,磁导率对带隙结构影响很大.空气背景磁性散射子情况,磁导率增加较小时,二个绝对光子带隙宽度逐渐减小,直至消失.继续增加磁导率,在较低频率范围内出现一个绝对光子带隙,占空比逐渐加大,且最佳填充系数基本保持不变.磁性背景空气散射子,类似地在较低频率范围内也出现了一个绝对光子带隙.磁性背景非磁性散射子与空气背景磁性散射子情况相似.  相似文献   

7.
In this paper, the properties of extraordinary mode for two types of three-dimensional magnetized plasma photonic crystals (3D MPPCs) composed of homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on a modified plane wave expansion (PWE) method, as Voigt effects are considered. As EM wave propagates in such 3D MPPCs, the EM wave can be divided in two modes due to the influence of Lorentz force. One is named extraordinary mode and another is ordinary mode. The equations for calculating the dispersive relationships for extraordinary mode as propagating through two types of structures (dielectric spheres immersed in magnetized plasma background or vice versa), are theoretically deduced. The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, the external magnetic field and plasma frequency on the properties of extraordinary mode for both types of MPPCs are investigated in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that not only the locations but also bandwidths and relative bandwidths of the photonic band gaps obtained by extraordinary mode for both types of 3D MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field and the relative dielectric constant of dielectric, respectively. However, the plasma collision frequency has no effect on the frequency ranges and relative bandwidths of PBGs for two types of 3D MPPCs. The locations of flatbands regions cannot be tuned by any parameters except for plasma frequency and the external magnetic field.  相似文献   

8.
一种衍生于三角晶格的二维光子晶体   总被引:1,自引:1,他引:0  
通过在二维三角晶格中引入三个完全相同的介质圆柱构成了一种全新结构的光子晶体,并对其光子能带进行了频域计算.借助数值方法分析了填充率对光子能带的影响,结果表明,在一定填充率下,这种二维光子晶体对于E偏振和H偏振都存在很宽的带隙,而且还可以获得一个窄完全带隙.  相似文献   

9.
The dispersive properties of three-dimensional magnetized plasma photonic crystals composed of homogeneous magnetized plasma spheres immersed in isotropic dielectric host with face-centered-cubic lattices are theoretically studied based on plane wave expansion method, as the magneto-optical Faraday effects of magnetized plasma are considered. The equations for calculating the band structures are theoretically deduced. The photonic band gap and a flatbands region can be obtained. The influences of host dielectric constant, plasma collision frequency, filling factor, external magnetic field and plasma frequency on the dispersive properties are investigated in detail, respectively, and some corresponding physical explanations are also given. The numerical results show that the photonic band gap can be manipulated by the plasma frequency, filling factor, external magnetic field and host dielectric constant, respectively. However, the plasma collision frequency has no effects on photonic band gap. The location of flatbands region cannot be tuned by any parameters except for the plasma frequency and external magnetic field.  相似文献   

10.
Dispersion properties of two types of two-dimensional periodically magnetized plasma array structures with square lattices have been investigated by using plane wave expansion method. It is found that two different regions of flatbands and photonic band gaps occur in the TE polarization due to the external magnetic field. The two types of system can be seen as a kind of unusual plasma photonic crystals. The results show that not only the location of flatbands but also the position and bandwidth of photonic band gaps can be tuned by external magnetic field. The cutoff frequency decreases as external magnetic field increases. The edge of two different of flatbands regions and cutoff frequency shift downward to lower frequencies obviously with increasing plasma collision frequency, while they shift upward to higher frequencies notably with increasing plasma frequency. The filling factor has little effect on the location of flatbands regions. The width of flatbands regions and photonic band gaps are almost unchanged by increasing filling factor, but the number of ominidirectional photonic band gap for type-1 structure plasma photonic crystals can be effectively controlled by adjusting filling factor. It is worth to be noted that the first band gaps above the cutoff frequencies in ГX and ГM direction for two types of PPCs can be modulated by the parameters as mentioned above, and the relative bandwidth of band gap in ГX direction is wider than the one in ГM direction. The results may provide theoretical instructions to design new tunable photonic crystals devices.  相似文献   

11.
电磁波在周期介质中的传播及二维光子晶体的光子带结构   总被引:5,自引:4,他引:1  
光子晶体是光学与凝聚态物理交叉的新领域,也是近年来应用物理学的一个重要研究领域,它是一种由介电常数高的(低的)介质在另一种介电常数低的(高的)背景介质中周期排列所组成的人造多维周期结构材料,能够产生光子带隙。频率落在带隙内的光在晶体里沿任何方向都不能传播,因而具有能够抑制原子、分子的自发辐射等诱人的光电子学特性,在基础研究和实际应用上都有着巨大的潜力。本文在这一领域里进行了富有成效的研究,获得了很好的结果。主要有:(1)利用平面波展开方法来计算二维光子晶体的带隙结构。首先,我们设计正方晶胞的二维光子晶体模型。设x3方向为介质柱的轴方向,二维周期结构在x1-x2平面上。晶胞的晶格常数为a,半径为r,介质柱和空气柱的介电常数分别为εa=17和εb=1,a>2r。设计的核心思想是通过降低光子晶体结构的对称性,消除光子能带在晶体的布里渊区高对称点上的本征简并。(2)对于二维光子晶体的电磁波理论及周期介质中的Bloch波解做了详细的推导,给出了光子晶体中禁带存在的理论依据。同时以正方格子晶格的二维光子晶体为例,验证了电介质在空气圆孔中的排列存在E偏振和H偏振的光子带隙重叠区,称为绝对光子带隙。对于二维的光子晶体,两种本征偏振模式的光子能带结构可以独立地调节,以实现两者的光子带隙的最优重叠, 从而大大提高了二维光子晶体的完全带隙宽度。  相似文献   

12.
在高频区存在巨带隙的长方晶格二维光子晶体   总被引:15,自引:12,他引:3  
梁华秋  冯尚申 《光子学报》2005,34(5):781-784
本文利用降低光子晶体的对称性来提高绝对禁带宽度, 提出两种长方结构长方介质柱二维光子晶体, 用快速平面波展开法研究其高频区的带结构.经参数优化发现, 长方晶格包含一套介质柱时, 最大绝对禁带宽度Δω为0.1265ωe(ωe=2πc/a, a为晶格常数, c为光速), 绝对禁带中心频率ωmid为1.9256ωe, Δω/ωmid=6.6%; 当长方晶格包含两套介质柱时, 最大绝对禁带宽度为0.203ωe, 绝对禁带中心频率为1.8597ωe, Δω/ωmid=10.9%.  相似文献   

13.
基于横向磁光效应磁化等离子体光子晶体的光子带隙特性   总被引:2,自引:0,他引:2  
通过外加与电磁波传播方向垂直的磁场来调控等离子体光子晶体的光子带隙结构。采用时域有限差分方法数值分析了由本征层为等离子体层和其他电介质材料层交替堆叠而成的磁化等离子体光子晶体的光子带隙结构和频谱特性。数值结果表明,光子晶体中等离子体的介电常数随着外磁场大小的变化而改变,从而使磁化等离子体光子晶体的带隙特性在一定的频率范围相应地得到调节。  相似文献   

14.
In this work using the transfer-matrix formalism we study pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal made of alternating layers of air and GaAs. We have found that the temperature dependence of the photonic band structure is negligible, however, its noticeable changes are due mainly to the variations of the width and the dielectric constant of the layers of GaAs, caused by the applied hydrostatic pressure. On the other hand, by using the Drude's model, we have studied the effects of the hydrostatic pressure by means of the variation of the effective mass and density of the carriers in n-doped GaAs, finding firstly that increasing the amount of n-dopants in GaAs, namely, increasing the plasma frequency, the photonic band structure is shifted to regions of higher frequencies, and secondly the appearance of two regimes of the photonic band structure: one above the plasma frequency with the presence of usual Bragg gaps, and the other, below this frequency, where there are no gaps regularly distributed, with their width diminishing with the increasing of the plasma frequency as well as with the appearance of more bands, but leaving a wide frequency range in the lowest part of the spectrum without accessible photon states. Also, we have found characteristic frequencies in which the dielectric constant equals for different applied pressures, and from which to higher or lower values the photonic band structure inverts its behavior, depending on the value of the applied hydrostatic pressure. We hope this work may be taken into account for the development of new perspectives in the design of new optical devices.  相似文献   

15.
在理想条件下,为了研究等离子体参数、填充率、入射角度和介质层相对介电常数对一维三元磁化等离子体光子晶体的禁带特性的影响,用由传输矩阵法计算得到的TE波任意角度入射时的左旋极化波(LCP)和右旋极化波(RCP)的透射系数来研究其禁带特性。结果表明,仅增加等离子体碰撞频率不能实现禁带宽度的拓展,改变等离子体频率、填充率和介质层的相对介电常数能实现对禁带宽度和数目的调谐。改变等离子体回旋频率能实现对右旋极化波的禁带的调谐,但对左旋极化波的禁带几乎无影响。入射角度的增大使得禁带低频区域带宽变大,而高频区域带宽则是将先减小再增大。  相似文献   

16.
Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.  相似文献   

17.
Xiang-kun Kong  Hong-wei Yang 《Optik》2010,121(20):1873-1876
The anomalous dispersion in one-dimensional plasma photonic crystals (1-DPPCs) is studied. The width of band pass and band gap are compressed, the phase velocity decreases and the cup-off frequency comes close to the frequency of plasma when EM wave oblique incidence on 1-DPPCs. The band gaps are affected by the thickness of plasma, the dielectric constant of the dielectric material, the plasma density and the angle of incidence. Superluminal negative group velocity is discovered in this study. This character is interesting for scientists and may have a potential application.  相似文献   

18.
二维函数光子晶体   总被引:1,自引:0,他引:1       下载免费PDF全文
肖利  雷天宇  梁禺  赵敏  刘慧  张斯淇  李宏  马季  吴向尧 《物理学报》2016,65(13):134207-134207
光子晶体是由两种或两种以上不同介电常数材料所构成的周期性光学纳米结构.光子晶体结构可分为一维、二维和三维,其中二维光子晶体已成为研究的热点.可调带隙的二维光子晶体可以设计出新型的光学器件,因此,对它的研究具有重要的理论意义和应用价值.本文提出的二维新型函数光子晶体可以实现光子晶体带隙的可调性.所谓二维函数光子晶体,即组成它的介质柱的介电常数是空间坐标的函数,它不同于介电常数为常数的二维常规光子晶体.二维函数光子晶体是通过光折变非线性光学效应或电光效应使介质柱的介电常数成为空间坐标的函数.运用平面波展开法给出了TE和TM波的本征方程,由傅里叶变换得到二维函数光子晶体介电常数ε(r)的傅里叶变换ε(G),其傅里叶变换比常规二维光子晶体的复杂.计算发现当介质柱介电常数为常数时,其傅里叶变换与常规二维光子晶体的相同,因此二维常规光子晶体是二维函数光子晶体的特例.在此基础上具体研究了二维函数光子晶体TE波和TM波的带隙结构,其介质柱介电常数函数形式取为ε(r)=k·r+b,其中k,b为可调的参数.并与二维常规光子晶体TE波和TM波的带隙结构进行了比较,发现二维函数光子晶体与二维常规光子晶体TE波和TM波的带隙结构有明显的区别,二维函数光子晶体的带隙数目、位置以及宽度随参数k的变化而发生改变.从而实现了二维函数光子晶体带隙结构的可调性,为基于二维光子晶体的光学器件的设计提供了新的设计方法和重要的理论依据.  相似文献   

19.
The characteristics of the cladding band structure of air-core photonic crystal fibers with silica rings in triangular lattice are investigated by using a standard plane wave method. The numerical results show that light can be localized in the air core by the photonic band gaps of the fiber. By increasing the air-filling fraction, the band gap edges of the low frequency photonic band gaps shift to shorter wavelength, whereas the band gap width decreases linearly. In order to make a specified light fall in the low frequency band gaps of the fiber, the interplay of the silica ring spacing and the air-filling fraction is also analyzed. It shows that the silica ring spacing increases monotonously when the air-filling fraction is increased, and the spacing range increases exponentially. This type fiber might have potential in infrared light transmission.  相似文献   

20.
宗易昕  夏建白  武海斌 《中国物理 B》2017,26(4):44208-044208
An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of twodimensional(2D) metal/dielectric photonic crystals.Based on the photonic band structures,the dependence of flat bands and photonic bandgaps on two parameters(dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric(M/D) photonic crystals,hole and cylinder photonic crystals.The simulation results show that band structures are affected greatly by these two parameters.Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters.It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones,and the frequency ranges of bandgaps also depend strongly on these parameters.Besides,the photonic crystals containing metallic medium can obtain more modulation of photonic bands,band gaps,and large effective refractive index,etc.than the dielectric/dielectric ones.According to the numerical results,the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号