首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments with diluted solutions of a customary water glas show that the rate of depolymerization depends not only upon pH and the SiO2 concentration, but also varies systematically as a function of the type and concentration of an additional electrolyte. Increasing cation activities of metal chlorides are causing a decrease of the rate constant in the order 1) Na+, K+, 2) Mn2+, Mg2+, Ca2+, Sr2+, 3) Zn2+, Ni2+, Ce3+, Cu2+. With respect to anions of sodium salts the rate constants are increasing with increasing activities in the order NO 3 , HCO 3 , Cl, SO 4 2– , whereas HPO 4 2– causes a decrease. The results permit to identify those components of water which are most responsible for a change of the depolymerization rate and may be used to evalute the properties of a water glass as a possible anticorrosive agent for water supply systems.  相似文献   

2.
The atomic absorption spectroscopy (AAS) has been successfully utilized for the measurement of the Pd and Ag ion concentrations in the plating baths and to elucidate the effects of temperature, initial metal ion and reducing agent concentrations and agitation on the electroless plating kinetics of Pd and Ag metals. The initial metal ion concentrations for Pd and Ag were varied over a range of 8.2–24.5 mM and 3.1–12.5 mM, respectively. The plating reactions were conducted in a constant temperature electroless plating bath over a temperature range of 20–60 °C and an initial hydrazine concentration range of 1.8–5.4 mM. It was found that the electroless plating of both Pd and Ag were strongly affected by the external mass transfer in the absence of bath agitation. The external mass transfer limitations for both Pd and Ag deposition have been minimized at or above an agitation rate of 400 rpm, resulting in a maximum conversion of the plating reaction at 60 °C and dramatically shortened plating times with the added advantage of uniform deposition morphology. The derivation of the differential rate laws and the estimation of the reaction orders and the activation energies for the electroless Pd and Ag kinetics were conducted via non-linear regression analysis based on the method of initial rates. For a constant-volume batch reactor, the integrated rate law was solved to calculate the conversion and the reactant concentrations as a function of plating time. The model fits were in good agreement with the experimental data. Furthermore, the bath agitation and the plating conditions used in the kinetics study were adopted for the synthesis of 16–20 μm thick composite Pd/Ag membranes (10–12 wt% Ag) and a pure-Pd membrane with a hydrogen selective dense Pd layer as thin as 4.7 μm. While hydrogen permeance of the Pd/Ag membranes A and B at 450 °C were 28 and 32 m3/m2-h-atm0.5, the H2 permeance for the 4.7 μm thick pure-Pd membrane at 400 °C was as high as 63 m3/m2-h-atm0.5. The long-term permeance testing of all the membranes synthesized from agitated plating baths resulted in a relatively slow leak growth due primarily to the improved morphology obtained via the bath agitation and modified plating conditions.  相似文献   

3.
An application of the multivariate calibration technique of partial least-squares (PLS) regression to near-infrared spectra of a fiber-optic sensor based on the evanescent wave principle is presented. The sensing element consists of a quartz glass fiber with a silicone cladding which enriches nonpolar water contaminants. Due to the interaction of the extracted molecules with the part of the light which is transmitted in the evanescent wave zone of the cladding, absorbance spectra of the contaminants can be collected. In view of a sensor application for in-situ environmental analysis, aqueous solutions of chlorinated hydrocarbon solvents (CHS), which often can be found as major water contaminants, have been measured. PLS regression was applied to three sets of CHS samples, representing typical features of NIR evanescent wave spectral data. These are, e.g., strong overlapping of the absorption bands of different CHS components, peak distortions due to temperature variations between reference and sample measurement and noisy data at analyte concentrations near to the limit of detection, respectively. For trichloroethene and 1,1-dichloroethene, where the calibration model was built for samples within a small concentration range of 1–9 mg l–1, satisfactory prediction results could be obtained with a relatively small root-mean-square error of 0.3 mg l–1 compared to analytical reference measurements. In contrast to this, for a three component system of dichloromethane, trichloromethane and trichloroethene with strongly overlapping absorption bands, where samples over a very broad concentration range from 3–4940 mg l–1 were included in the PLS model, the prediction accuracy decreased enormously and for some samples strong deviations between real and predicted data occurred. Nevertheless, applying multivariate calibration to this difficult system with similar spectral features and huge differences in the concentration of the species allowed an acceptable spectral distinction and at least a semi-quantitative determination of the CHS species.  相似文献   

4.
The second dissociation reaction of phosphoric acid has been studied Raman spectrophotometrically and potentiometrically at pressures up to 100 MPa and temperatures up to 473.2 K in solutions with ionic strengths from 0.3 to about 1.0 mol-kg–1. Molalities, of orthophosphate salts from 0.005 to 0.1 mol-kg–1 have been used. The changes of the widths at half-height and the Raman shifts for both H2PO 4 and HPO 4 2– ions with changing variables of state are reported. Stoichiometric equilibrium constants for the second dissociation reaction are evaluated.  相似文献   

5.
Flow calorimetry has been used to study the interaction of HPO 4 2– and H2PO 4 with H+ in water at temperatures of 348.15 and 398.15 K and at pressures of 1.52 and 12.50 MPa. The protonations of HPO 4 2– and H2PO 4 are exothermic and endothermic, respectively, under these experimental conditions. Under the conditions of this study, the effect of pressure on the enthalpy changes for both reactions is small. Equilibrium constant K, enthalpy change H, and entropy change S values are given for the protonation reactions at each temperature. These values are compared with those reported in the literature. Incorporation into the calculation procedure of reactions involving association between protonated phosphate species to form hydrogen-bonded dimers does not result in better fits of the experimental data.  相似文献   

6.
Mononuclear, binuclear NiII and heterobinuclear ZnIINiII complexes have been derived from lateral macrobicyclic tricompartmental ligands embracing three different donor sets: (i) O2N2-donor set, derived from ether oxygens and tertiary amine nitrogens; (ii) N2O2-donor set, derived from tertiary amine nitrogens and phenolic oxygens; (iii) O2N2-donor set, derived from phenolic oxygens and azomethine nitrogens. Cyclic voltammograms of the mononuclear NiII complexes showed irreversible one-electron reduction processes in the –1.2 to –1.3 V region and an irreversible oxidation process in the range +0.8 V potential region. The binuclear complexes showed quasireversible two-step single electron reduction processes around the –1.3 and –1.7 V potential regions. The anodic potential region showed an irreversible oxidation process at +1.0 V. The heterobinuclear ZnIINiII complex showed an irreversible reduction of the NiII species at –1.55 V. The catalytic hydrolysis towards 4-nitrophenyl phosphate by the mononuclear, binuclear NiII complexes and the heterobinuclear complex were found to be appreciable. The pseudo-first order rate constant for the catalytic hydrolysis catalyzed by the binuclear and heterobinuclear complexes were found to be higher (9.8 × 10–4 s–1) than that of the corresponding mononuclear complexes (1.3 × 10–5 s–1), which ascertain the requirement of two metal ions in close proximity for the binding of the nucleophilic OH and the phosphate group.  相似文献   

7.
Summary The interaction between NO and different possible adsorption sites of the NiO(100) surface is studied. The Ni2+ cation gives a bonding to NO in reasonable agreement with experiment, but only if a crystal potential corresponding to less than completely ionic charges is assumed. The computed angle of 43° is also in good agreement with experiment. O1– sites in both weak and strong crystal potentials also give a strong interaction with NO, 1.3 and 0.5 eV, respectively. In this case the angle is larger or around 70°. The O2– anion and Ni1+ sites do not give any significant bonding irrespective of assumed crystal potential and can be excluded as adsorption sites. The computed vibrational frequency for the adsorbed NO show shifts of +50, –85 and –200 cm–1 for adsorption on Ni2+ in the weak potential, and O1– in strong and weak potential, respectively. Only one, downwards shifted, frequency has been observed in the experiment but the most likely candidate for the experimentally observed adsorption site with a binding of 0.5 eV, is still the Ni2+ in a weak potential. Nitrogen core level shifts are also computed and discussed and the fully screened core-hole state is obtained for a cluster model, NiF4O+NO, of Ni2+ in NiO with an ionicity lower than the standard ± 2.This work is dedicated to Prof. Inga Fischer-Hjalmars  相似文献   

8.
Ion association has been studied by positron lifetime spectroscopy in aqueous solutions containing the Ni2+ and SO 4 2– ions at 294 K with the double aim of assessing the reliability of the method for quantitative determination of complex formation constants and of probing the validity of various expressions to calculate single-ion activity coefficients at high ionic strength. The existence of two complexes, identified as NiSO4 and Ni2SO 4 2+ , is shown by the data analysis. Considering the formation constant of the former, KI=(196±10)M–1, determined in previous works leads to discarding several of the expressions commonly used for activity corrections. Two possible values are retained for KI, (193±20)M–1 and (179±20)M–1, while KII related to Ni2SO 4 2+ is better defined, as (2.57±0.14)M–1.  相似文献   

9.
An isotope exchange method for the speciative determination of phosphorus (PO 4 3– , PO 3 3– and total P) in natural water samples is proposed by using the exchange system of moly bdophosphate in the aqueous phase and tetraphenylarsonium molybdophosophate in the organic phase. In this exchange system, only PO 4 3– exchanges and is determined. When the sample water is treated with Br2 water in advance, the amount of PO 4 3– +PO 3 3– can be obtained. When the sample is treated with H2SO4 and HNO3, then the amount of total P can be determined.  相似文献   

10.
The first stages of Co–Ni and Co–Ni–Mo deposition in sulphate–citrate medium at pH 4.0 were analysed. In both cases, the formation of non-hydrogenated nickel on the electrode before alloy deposition was detected by linear sweep voltammetry and inductively coupled plasma mass spectrometry. Co–Ni electrodeposition was anomalous since the Co/Ni ratio in the alloy was higher than the corresponding [Co(II)]/[Ni(II)] ratio in solution. The adsorption of Co(II) over the initial nickel could explain the anomalous codeposition, which persisted with the addition of molybdate to the Co–Ni bath. However, the formation of intermediate molybdenum oxides also took place. A mechanism has been proposed to describe the sequence of steps for Co–Ni–Mo electrodeposition. Under our conditions, the alloy is formed mainly from free Co2+ and Ni2+ cations, whereas molybdate is reduced firstly to molybdenum oxide from MoO4(H3Cit)2− and, secondly, NiCit catalyses the subsequent reduction to molybdenum metal of the intermediate [MoO2–NiCit]ads species.  相似文献   

11.
An automated on-line pre-reduction of arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) using flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) is feasible. The kinetics of pre-reduction and complexation depend strongly on the concentration of -cysteine and on the temperature in the following increasing order: inorganic As(V)<DMA<MMA. Arsenate is pre-reduced/complexed within less than 50 s at 70–100°C compared to 1 h at room temperature, while MMA and DMA require 1.5–2 min at 70–100°C and up to 1–2 h at room temperature. The characteristic masses and concentrations for 100 μl injections are 0.01 ng and 0.1 μg l−1 in integrated absorbance and 0.2 ng and 2 μg l−1 in peak height measurements, and the limits of detection are ca. 0.5 ng and 5 μg l−1, respectively. In a high-performance liquid chromatography (HPLC)–HGAAS system, the -cysteine complexes of inorganic As(III), MMA and DMA are best separated within 7 min by HPLC on a strongly acidic cation exchange column such as Spherisorb S SCX 120×4 mm (5 μm) with a mobile phase containing 12 mmol l−1 phosphate buffer (KH2PO4/H3PO4)–2.5 mmol l−1 -cysteine, pH 3.3–3.5. Upon dilution to -cysteine levels below 10 mmol l−1, which are compatible with HPLC separations, the DMA–cysteine complex is unstable on storage. No baseline separations are possible with anion exchange and reverse phase C18 HPLC columns. The limits of detection with 50 μl injections in peak area mode are ca. 0.5 ng and 10 μg l−1, respectively.  相似文献   

12.
Summary Drops with increasing volume of a titrant standard solution are put on a microscope slide. One drop of equal volume of a sample solution is then added to all drops. The drops are allowed to evaporate at room temperature and the residues are observed under a microscope. If the end-point is reached, the characteristic crystals of the titrant appear at the periphery of the evaporated drops. Following substances have been determined by this technique: Ca2+ (0.4–4.0g) with (NH4)2C2O4, SO4 2– (0.48–4.8g) with BaCl2, Ni2+ (0.2–2.0g) with dimethylglyoxime, Fe3+ (0.6–6.0g) with K4[Fe(CN)6], Cl (0.15–1.5g) with silver acetate.
Titrationen im Submikro-Bereich mit Mikrokristall-Endpunktsindikation
Zusammenfassung Tropfen mit zunehmenden Volumina eines Titrationsmittels (Maßlösung) werden auf einen Objektträger aufgetragen. Dazu gibt man gleich große Tropfen einer Probelösung. Man läßt diese bei Raumtemperatur eintrocknen und betrachtet die Rückstände unter einem Mikroskop. Nach Erreichen des Endpunkts erscheinen am Tropfenrand charakteristische Kristalle des Titrationsmittels. Mit dieser Technik wurden folgende Ionen bestimmt: Ca2+ (0,4–4,0g) mit (NH4)2C2O4, SO4 2– (0,48–4,8/gmg) mit BaCl2, Ni2+ (0,2–2,0/gmg) mit Dimethylglyoxim, Fe3+ (0,6–6,0/gmg) mit K4[Fe(CN)6] und Cl (0,15–1,5/gmg) mit Silberacetat.
  相似文献   

13.
A Picker flow microcalorimeter and a flow densimeter were used to obtain apparent molar heat capacities and apparent molar volumes of aqueous solutions of Na3PO4 and mixtures of Na2HPO4 and NaH2PO4. Identical measurements were also made on solutions of tetramethylammonium salts to evaluate the importance of anion-cation interaction. The experimental apparent molar properties were analyzed in terms of a simple extended Debye-Hückel model and the Pitzer ion-interaction model, both with a suitable treatment for the effect of chemical relaxation on heat capacities, to derive the partial molar properties of H2PO 4 (aq), HPO 4 2– (aq) and PO 4 3– (aq) at infinite dilution. The volume and heat capacity changes for the second and third ionization of H3PO4(aq) have been determined from the experimental data. The importance of ionic complexation with sodium is discussed.  相似文献   

14.
The Rh target preparation for production of 103Pd was investigated by using a thick electrodeposition of rhodium metal on a copper backing. The electrodeposition experiments were performed in acidic sulfate media using RhCl3·3H2O, Rh2(SO4)3 (recovered from hydrochloric acid solution) and also in the commercially available Rhodex plating baths. For high current beam irradiation of a Rh target, the qualities of the deposit of the three baths were compared in terms of thermal shock, crack-free and morphology criteria. The quality of the plating obtained from a sulfate bath [Rh2(SO4)3] was comparable with the one obtained from commercially available Rhodex bath. The optimum conditions of the electrodepositions were as follows: 4.8 g rhodium [as Rh2(SO4)3], pH 2, DC current density of ca 8.5 mA·cm–2, 1% sulfamic acid (w/v) and temperature 40–60 °C.The authors would like to thank their colleagues at the VUB-Cyclotron department for help and assistance in preparation of the electrodeposition equipment and taking the SEM photomicrographs and also K. Aardaneh (NRCAM) for his assistance.  相似文献   

15.
The Rh target preparation for production of 103Pd was investigated by using a thick electrodeposition of rhodium metal on a copper backing. The electrodeposition experiments were performed in acidic sulfate media using RhCl3·3H2O, Rh2(SO4)3 (recovered from hydrochloric acid solution) and also in the commercially available Rhodex plating baths. For high current beam irradiation of a Rh target, the qualities of the deposit of the three baths were compared in terms of thermal shock, crack-free and morphology criteria. The quality of the plating obtained from a sulfate bath [Rh2(SO4)3] was comparable with the one obtained from commercially available Rhodex bath. The optimum conditions of the electrodepositions were as follows: 4.8 g rhodium [as Rh2(SO4)3], pH 2, DC current density of ca 8.5 mA·cm–2, 1% sulfamic acid (w/v) and temperature 40–60 °C.The authors would like to thank their colleagues at the VUB-Cyclotron department for help and assistance in preparation of the electrodeposition equipment and taking the SEM photomicrographs and also K. Aardaneh (NRCAM) for his assistance.  相似文献   

16.
Guo  Yanhe  Ge  Qingchun  Lin  Hai  Lin  Huakuan  Zhu  Shourong 《Transition Metal Chemistry》2003,28(6):668-675
The ligands 1,10-N,N-bis(2-hydroxymethylbenzoyl)-1,4,7,10-tetraazadecane (L1) and 1,11-N,N-bis(2-hydroxymethylbenzoyl)-1,4,8,11-tetraazaundecane (L2) have been synthesized. The stability constants of NiII complexes of ligands L1 and L2 have been studied at 25 °C using pH titrations. The kinetics of general acid (HCl, 0.04–2.34 mol dm–3) or buffer (DEPP or DESPEN, 0.05 mol dm–3, pH 4.83–5.72)-catalyzed dissociation of these NiII complexes have been investigated at 25 °C using a stopped-flow spectrophotometer. The ionic strength of solution was controlled at I = 2.34 mol dm–3 (KCl + HCl) and I = 0.1 mol dm–3 (KNO3, buffer), respectively. The kinetic dissociation of NiII complexes catalyzed by HCl obeys the equilibrium k obs = k 1d + k 2H[H+], whereas in buffer solution the observed rate constant k obs = k d + k 1H[H+]. At pH < 1.5, both the proton-assisted and direct protonation pathways contribute to the rates, whereas solvation is the dominant pathway at pH > 6. In the 4.8–5.7 pH range, the complexes dissociate mainly through a proton-assisted pathway.  相似文献   

17.
A spectrophotometric method for the simultaneous determination of rare-earth and transition elements in synthetic superconductors, [(La1 – x Eu x )1.82Sr0.18CuO4], by the use of 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) as chelating agent was developed. The influence of chemical variables affecting the reaction was studied. A partial least-squares (PLS) multivariate calibration procedure was used to assess the data obtained from several calibration solutions measured over the wavelengths range 400–700 nm. The concentration range for Cu was (1–12) × 10–6 mol/L, while the range for the rare-earth elements La and Eu was (2–8) × 10–6 mol/L. The relative errors in the determinations were less than 5% in most cases.  相似文献   

18.
Summary The kinetics of the anation reaction of [Co(NH3)5H2O]3+ by H3PO3/H2PO 3 , to give [CoH2PO3(NH3)5]2+, have been studied at 60, 70 and 80°C, in the acidity range [H+](M)=1.5 · 10–1 –2.0 · 10–3. Only H2PO3 is found to be reactive. The rate data is consistent with an Id mechanism. The mean value of outer sphere association of [Co(NH3)H2O]3+ with H2PO 3 is 1.5 M–1. Values of the interchange constants are: 1044ki(s–1)= 0.29, 1.47, 5.13, at 60, 70 and 80 °C respectively (H= 1.4 · 102KJmol–1, S=8.3 · 10 JK–1 mol–1). The first acidity constant of H3PO3 at I=1.0 has also been determined: 102Ka(M)=4.8, 5.2 and 5.5, at 25, 40 and 50 °C respectively.  相似文献   

19.
Trace amounts of noble metal-doped Ni/Mg(Al)O catalysts were prepared starting from Mg-Al hydrotalcites (HTs) and tested in daily start-up and shut-down (DSS) operation of steam reforming (SR) of methane or partial oxidation (PO) of propane. Although Ni/Mg(Al)O catalysts prepared from Mg(Ni)-Al HT exhibited high and stable activity in stationary SR, PO and dry reforming of methane and propane, the Ni/Mg(Al)O catalysts were drastically deactivated due to Ni oxidation by steam as purge gas when they were applied in DSS SR ofmethane. Such deactivation was effectively suppressed by doping trace amounts of noble metal on the catalysts by using a “memory effect” of HTs. Moreover, the noble metal-doped Ni/Mg(Al)O catalysts exhibited “intelligent” catalytic behaviors, i.e., self-activation and self-regenerative activity, leading to high and sustainable activity during DSS operation. Pt was the most effective among noble metals tested. The self-activation occurred by the reduction of Ni2+ in Mg(Ni,Al)O periclase to Ni0 assisted by hydrogen spillover from Pt (or Pt-Ni alloy). The self-regenerative activity was accomplished by self-redispersion of active Ni0 particles due to a reversible reductionoxidation movement of Ni between the outside and the inside of the Mg(Al)O periclase crystal; surface Ni0 was oxidized to Ni2+ by steam and incorporated into Mg(Ni2+,Al)O periclase, whereas the Ni2+ in the periclase was reduced to Ni0 by the hydrogen spillover and appeared as the fine Ni0 particles on the catalyst surface. Further a “green” preparation of the Pt/Ni/[Mg3.5Al]O catalysts was accomplished starting from commercial Mg3.5-Al HT by calcination, followed by sequential impregnation of Ni and Pt.  相似文献   

20.
The flame atomic absorption spectroscopic determination of molybdenum, in aqueous solutions of tetrathiomolybdate (MoS 4 2– , TTM) and paramolybdate species (Mo7O 24 2– , PM) has been investigated. A serious signal decrease occurred, if molybdenum has been present as tetrathiomolybdate species, and the sensitivity loss has been 85%. To improve the sensitivity, the solutions of TTM have been digested by wet-acid treatment, and made 0.14 mol·l–1 ammonia. Finally, Mo has been determined by AAS using a nitrous oxide-acetylene flame. The range of the calibration was 0–100 mg·l–1 and the relative standard deviation of the slope was less than 1%.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号