首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of uranium from crude phosphoric acid has been investigated using conventional activated carbons. It was found that treatment with nitric acid oxidized the surface of activated carbon and significantly increased the adsorption capacity for uranium in acidic solutions. The parameters that affect the uranium(VI) adsorption, such as contact time, solution pH, initial uranium(VI) concentration, and temperature, have been investigated. Equilibrium data were fitted to a simplified Langmuir and Freundlich isotherms for the oxidized samples which indicate that the uranium adsorption onto the activated carbon fitted well with Langmuir isotherm than Freundlich isotherm. Equilibrium studies evaluate the theoretical capacity of activated carbon to be 45.24 g kg?1.  相似文献   

2.
The speciation of 1 mM uranium(VI) in carbonate-free aqueous solutions of 50 mM protocatechuic acid (PCA, 3,4-dihydroxybenzoic acid) was studied in the pH range of 4.0 to 6.8 using EXAFS spectroscopy. The uranium LIII-edge EXAFS spectra were analyzed using a newly developed computer algorithm for iterative transformation factor analysis (FA). Two structural different uranium(VI) complexes were observed. The speciation in the pH range of 4.0 to 4.8 is dominated by a 1:2 or 1:3 uranium(VI)/PCA complex with bidentate coordination of the carboxyl group to the uranium(VI) moiety. Already at pH 4.6 significant amounts of a second species are formed. This uranium(VI) species contains two PCA ligands that are bound to the uranium via their neighboring phenolic hydroxyl groups under formation of five-member rings.  相似文献   

3.
In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin–Radushkevich (D–R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D–R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔH°), entropy (ΔS°) and free energy change (ΔG°) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models.  相似文献   

4.
Summary The algae-clay composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Ulva sp.) and clay (Na bentonite) were used to prepare composite adsorbent. The ability of the composite adsorbent to adsorp uranium(VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time. Parameters of desorption were also investigated to recover the adsorbed uranium. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich isotherms. The thermodynamic parameters such as the enthalpy ΔH, entropy ΔS and Gibbs free energy ΔG were calculated from the slope and intercept of lnKd vs. 1/T plots. The results suggested that the Ulva sp.-Na bentonite composite adsorbent is suitable as sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.  相似文献   

5.
Fusarium sp. #ZZF51, mangrove endophytic fungus originated from South China Sea coast, was chemically modified by formaldehyde, methanol and acetic acid to enhance its affinity of uranium(VI) from waste water. The influencing factors about uranium(VI) adsorption such as contact time, solution pH, the ratio of solid/liquid (S/L) and initial uranium(VI) concentration were investigated, and the suitable adsorption isotherm and kinetic models were determined. In addition, the biosorption mechanism was also discussed by FTIR analysis. Experimental results show that the maximum biosorption capacity of formaldehyde-treated biomass for uranium(VI) at the optimized condition of pH 6.0, S/L 0.6 and equilibrium time 90 min is 318.04 mg g?1, and those of methanol-treated and HAc-treated biomass are 311.95 and 351.67 mg g?1 at the same pH and S/L values but different equilibrium time of 60 and 90 min, respectively. Thus the maximum biosorption capacity of the three kind of modified biomass have greatly surpassed that of the raw biomass (21.42 mg g?1). The study of kinetic exhibits a high level of compliance with the Lagergren’s pseudo-second-order kinetic models. Langumir and Freundlich models have proved to be well able to explain the sorption equilibrium with the satisfactory correlation coefficients higher than 0.96. FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. #ZZF51 play an important role in uranium(VI) biosorption process.  相似文献   

6.
To characterize the future redox milieu caused by natural degradation of wood in flooded mines, the aquifer of a highland bog ground was studied as a natural analogue site. Going from the surface to a depth of one meter in the bog water, the redox potential measured with a platinum electrode changes from 593 mV to −95 mV. From the depth-water analyses and analyses of bog gas extracted from the ground, an Eh value of −119±5 mV could be calculated. Methane and hydrogen sulfide were found in the gas, characterizing the strongly reducing condition in the bog ground. From that, the conclusion for the future mine situation can be drawn that uranium(VI) and arsenic(V) will be reduced and precipitated as U(OH)4 and As2S3. In that way, decontamination of the mine water takes place as a consequence of a natural attenuation process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Cross-linked chitosan resins with catechol (catechol-type chitosan, type 1 and type 2), iminodiacetic acid (IDA-type chitosan), iminodimetylphosphonic acid (IDP-type chitosan), phenylarsonic acid (phenylarsonic acid-type chitosan), or serine (serine-type chitosan) were prepared for the collection and concentration of uranium(VI). The adsorption behavior of U(VI) and other ionic species, such as metal ions and oxo-acid ions, on the cross-linked chitosan (base material) and chitosan resins modified with chelating moieties was examined using a column procedure. Especially, the catechol-type chitosan (type 2) adsorbed U(VI) at pH 2-7, and selectively collected U(VI) at acidic pH regions by forming a stable chelate with hydroxyl groups of catechol moiety introduced to the chitosan. Also, the adsorption properties of cationic and anionic species present in aquatic media were elucidated. The adsorption ability for U(VI) was in the order: catechol-type chitosan (type 2) > serine-type chitosan > phenylarsonic acid-type chitosan > the others. The catechol-type chitosan (type 2) was useful for the collection and concentration of uranium(VI).  相似文献   

8.
A selective and very effective separation method for uranium(VI) has been developed by using poly(dibenzo-18-crown-6) and column chromatography. The separations are carried out from ascorbic acid medium. The adsorption of uranium(VI) was quantitative from 0.00002 to 0.006 M ascorbic acid. The elution of uranium(VI) was quantitative with 2.0-8.0 M HCl and 2.0-5.0 M H2SO4. The capacity of poly(dibenzo-18-crown-6) for uranium(VI) was found to be 0.92 +/- 0.01 mmol g(-1) of crown polymer. Uranium(VI) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of uranium in geological samples. It is possible to separate and determine 5 ppm of uranium(VI) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately +/- 2%).  相似文献   

9.
A selective and effective column chromatographic separation method has been developed for uranium(VI) using poly[dibenzo-18-crown-6]. The separation was carried out in L-valine medium. The adsorption of uranium(VI) was quantitative from 1.0 × 10−4 to 1 × 10−1 M of L-valine. Amongst various eluents 2.0–8.0 M hydrochloric acid, 1.0–4.0 M sulfuric acid, 1.0–5.0 M perchloric acid, 6.0–8.0 M hydrobromic acid and 5.0–6.0 M acetic acid were found to be efficient eluents for uranium(Vl). The capacity of poly[dibenzo-18-crown-6] for uranium(VI) was 0.25 ± 0.01 mmol/g of crown polymer. Uranium(VI) was separated from number of cations and anions in binary mixtures in which most of the cations and anions show a very high tolerance limit. The selective separation of uranium(VI) was carried out from multicomponent mixtures. The method was extended to determination of uranium(VI) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately ∼2%).  相似文献   

10.
Adsorption studies of thorium and uranium radionuclides on 9 different pure clay minerals and 4 local Malaysian soil sediments were conducted. Solution containing dissolved thorium and uranium at pH 4.90 was prepared from concentrate sludges from a long term storage facility at a local mineral processing plant. The sludges are considered as low level radioactive wastes. The results indicated that the 9 clay minerals adsorbed more uranium than thorium at pH ranges from 3.74 to 5.74. Two local Malaysian soils were observed to adsorb relatively high concentration of both radionuclides at pH 3.79 to 3.91. The adsorption value 23.27 to 27.04 ppm for uranium and 33.1 to 50.18 ppm for thorium indicated that both soil sediments can be considered as potential enhanced barrier material for sites disposing conditioned wastes containing uranium and thorium.  相似文献   

11.
Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater.However,the adsorption rate and loading capacity of such adsorbents should be further improved due to the economic viability consideration.In this paper,polyvinyl alcohol functionalized with amidoxime(PVA-g-AO)has been prepared as a new adsorbent for uranium(Ⅵ)adsorption from aqueous solution.The physicochemical properties of PVA-g-AO were investigated using infrared spectroscopy(IR),scanning electron microscope(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).Results showed that the ligand monomers were successfully grafted onto the matrixes.The XRD and XPS analysis showed that uranium was adsorbed in metal ionic form rather than in crystal form.Uranyl(U(Ⅵ))adsorption properties onto PVA-g-AO were evaluated.The adsorption of U(Ⅵ)by PVA-g-AO was fast,with an equilibrium time of less than 50 min.Additionally the maximum adsorption capacity reached 42.84 mg/g at pH 4.0.  相似文献   

12.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

13.
A chitosan resin possessing a phenylarsonic acid moiety (phenylarsonic acid type chitosan resin) was developed for the collection and concentration of trace uranium prior to inductively coupled plasma (ICP) atomic emission spectrometry (AES) measurement. The adsorption behavior of 52 elements was systematically examined by packing it in a minicolumn and measuring the elements in the effluent by ICP mass spectrometry. The resin could adsorb several cationic species by a chelating mechanism, and several oxo acids, such as Ti(IV), V(V), Mo(VI), and W(VI), by an anion-exchange mechanism and/or a chelating mechanism. Especially, U(VI) could be adsorbed almost 100% over a wide pH region from pH 4 to 8. Uranium adsorbed was easily eluted with 1 M nitric acid (10 mL), and the 25-fold preconcentration of uranium was achieved by using a proposed column procedure, which could be applied to the determination of trace uranium in seawater by ICP-AES. The limit of detection was 0.1 ng mL−1 for measurement by ICP-AES coupled with 25-fold column preconcentration.  相似文献   

14.

In order to separate and pre-concentrate uranium from aqueous phase, a novel silica-based adsorbent was prepared by impregnating nalidixic acid (HNA) into a macroreticular silica/polymer composite support (SiO2-P) with a mean diameter of 60 μm. Adsorption behavior of uranium from aqueous solution onto the adsorbent was studied. Experimental results indicated that HNA/SiO2-P showed strong adsorption for uranium in a wide range of pH from 3.5 to 10.0, and the maximum adsorption capacity was 35.4 mg g−1. In addition, HNA/SiO2-P exhibited good selectivity for U(VI) and showed weak or bare adsorption affinity to foreign ions. Kinetic and isotherm of uranium adsorption were in accordance with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model, respectively. Moreover, U(VI) sorption was found to be an endothermic reaction and spontaneous under experimental state. The synthesized adsorbent showed an admirable stability at lower pH values in aqueous solution.

  相似文献   

15.
16.
The uranium(VI) accumulation was studied in detail by using the biomass of mangrove endophytic fungus Fusarium sp.#ZZF51 from the South China Sea. The uranium(VI) biosorption process onto the tested fungus powders was optimized at pH 4.0, adsorption time 60 min, and uranium(VI) initial concentration 50 mg L−1 with 61.89% of removal efficiency. According to Fourier transform infrared spectra for the tested fungus before and after loaded with uranium(VI), the results showed that both of hydroxyl and carboxyl groups acted as the important roles in the adsorption process. In addition, the experimental data were analyzed by using parameter and kinetic models, and it was obtained that the Langmuir isotherm model and the pseudo-second-order kinetic model provided better correlation with the experimental data for adsorption of uranium(VI).  相似文献   

17.
In this paper, the modified magnetic chitosan resin containing diethylenetriamine functional groups (DETA-MCS) was used for the adsorption of uranium ions from aqueous solutions. The influence of experimental conditions such as contact time, pH value and initial uranium(VI) concentration was studied. The Langmuir, Freundlich, Sips and Dubinin–Radushkevich equations were used to check the fitting of adsorption data to the equilibrium isotherm. The best fit for U(VI) was obtained with the Sips model. Adsorption kinetics data were tested using pseudo-first-order and pseudo-second-order models. Kinetic studies showed that the adsorption followed the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. The present results suggest that DETA-MCS is an adsorbent for the efficient removal of uranium(VI) from aqueous solution.  相似文献   

18.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

19.
《Analytical letters》2012,45(4):644-657
The variables affecting determination of ultra trace levels of uranium (VI) in aqueous samples by differential pulse cathodic stripping voltammetry using chloranilic acid as the complexing agent have been examined in detail. Effect of organic surfactants on the voltammetric behavior has been studied. Electrochemical impedance measurements reveal the effect of adsorption of different surfactants on the adsorption pre-concentration step of uranium-chloranilic acid complex. Additionally, to better understand the analytical feature of the method, physicochemical aspects of the preconcentration process has been studied. Adsorption of uranium-chloranilic acid complex follows the Langmuir adsorption isotherm. Analysis results on sea water samples from India are reported.  相似文献   

20.
The adsorption of uranium (VI) using tetraphenylimidodiphosphinate (Htpip) was studied. Factors of affecting sorption efficiency have been investigated and results showed the adsorption of uranium (VI) was equilibrium at pH 4.5, time 20 min, adsorbent dosage 0.005 g and initial concentration 50 mg L?1 reaching 99.86 mg g?1 of adsorption capacity and 99.86% of removal efficiency. Additionally, the interfering ions studies showed that the adsorbent possessed excellent adsorption selectivity of uranium (VI). The surface morphology of Htpip was investigated by SEM. The adsorption process of uranium (VI) onto Htpip fit the pseudo-second-order kinetic model and the Freundlich isotherm model very well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号