首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE’s). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.  相似文献   

2.
To optimize a complicated function constructed from a solution of a system of ordinary differential equations (ODEs), it is very important to be able to approximate a solution of a system of ODEs very precisely. The precision delivered by the standard Runge-Kutta methods often is insufficient, resulting in a “noisy function” to optimize. We consider an initial-value problem for a system of ordinary differential equations having polynomial right-hand sides with respect to all dependent variables. First we show how to reduce a wide class of ODEs to such polynomial systems. Using the estimates for the Taylor series method, we construct a new “aggregative” Taylor series method and derive guaranteed a priori step-size and error estimates for Runge-Kutta methods of order r. Then we compare the 8,13-Prince-Dormand’s, Taylor series, and aggregative Taylor series methods using seven benchmark systems of equations, including van der Pol’s equations, the “brusselator,” equations of Jacobi’s elliptic functions, and linear and nonlinear stiff systems of equations. The numerical experiments show that the Taylor series method achieves the best precision, while the aggregative Taylor series method achieves the best computational time. The final section of this paper is devoted to a comparative study of the above numerical integration methods for systems of ODEs describing the optimal flight of a spacecraft from the Earth to the Moon. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 24, Dynamical Systems and Optimization, 2005.  相似文献   

3.
Using the expression of the exact solution to a periodic boundary value problem for an impulsive first-order linear differential equation, we consider an extension to the fuzzy case and prove the existence and uniqueness of solution for a first-order linear fuzzy differential equation with impulses subject to boundary value conditions. We obtain the explicit solution by calculating the solutions on each level set and justify that the parametric functions obtained define a proper fuzzy function. Our results prove that the solution of the fuzzy differential equation of interest is determined, under the appropriate conditions, by the same Green’s function obtained for the real case. Thus, the results proved extend some theorems given for ordinary differential equations.  相似文献   

4.
Motivated by boundary problems for linear differential equations, we define an abstract boundary problem as a pair consisting of a surjective linear map (“differential operator”) and an orthogonally closed subspace of the dual space (“boundary conditions”). Defining the composition of boundary problems corresponding to their Green’s operators in reverse order, we characterize and construct all factorizations of a boundary problem from a given factorization of the defining operator. For the case of ordinary differential equations, the main results can be made algorithmic. We conclude with a factorization of a boundary problem for the wave equation. This work was supported by the Austrian Science Fund (FWF) under the SFB grant F1322.  相似文献   

5.
In this paper, we present a class of A(α)-stable hybrid linear multistep methods for numerical solving stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The method considered uses a second derivative like the Enright’s second derivative linear multistep methods for stiff IVPs in ODEs.  相似文献   

6.
In this paper, we have shown that the numerical method of lines can be used effectively to solve time dependent combustion models in one spatial dimension. By the numerical method of lines (NMOL), we mean the reduction of a system of partial differential equations to a system of ordinary differential equations (ODE's), followed by the solution of this ODE system with an appropriate ODE solver. We used finite differences for the spatial discretization and a variant of the GEAR package for the ODE's.We have presented various solution methods of interest for the nonlinear algebraic system in this setting; that is, in the corrector iteration section of the GEAR package applied to combustion models. These methods include Newton/block SOR (SOR denotes successive over-relaxation), block SOR/Newton, Newton/block-diagonal Jacobian, Newton/kinetics-only Jacobian, and Newton/block symmetric SOR. These methods have in common their lack of frequent use in ODE software and their eady applicability to partial differential equations in more than one spatial dimension.Finally, we have given the results of numerical tests, run on the CDC-7600 and Cray-1 computers. By so doing, we indicate the more promising nonlinear system solvers for the NMOL solution of combustion models.  相似文献   

7.
线性常微分方程初值问题求解在许多应用中起着重要作用.目前,已存在很多的数值方法和求解器用于计算离散网格点上的近似解,但很少有对全局误差(global error)进行估计和优化的方法.本文首先通过将离散数值解插值成为可微函数用来定义方程的残差;再给出残差与近似解的关系定理并推导出全局误差的上界;然后以最小化残差的二范数为目标将方程求解问题转化为优化求解问题;最后通过分析导出矩阵的结构,提出利用共轭梯度法对其进行求解.之后将该方法应用于滤波电路和汽车悬架系统等实际问题.实验分析表明,本文估计方法对线性常微分方程的初值问题的全局误差具有比较好的估计效果,优化求解方法能够在不增加网格点的情形下求解出线性常微分方程在插值解空间中的全局最优解.  相似文献   

8.
The article presents a new general solution to a loaded differential equation and describes its properties. Solving a linear boundary value problem for loaded differential equation is reduced to the solving a system of linear algebraic equations with respect to the arbitrary vectors of general solution introduced. The system's coefficients and right sides are computed by solving the Cauchy problems for ordinary differential equations. Algorithms of constructing a new general solution and solving a linear boundary value problem for loaded differential equation are offered. Linear boundary value problem for the Fredholm integro‐differential equation is approximated by the linear boundary value problem for loaded differential equation. A mutual relationship between the qualitative properties of original and approximate problems is obtained, and the estimates for differences between their solutions are given. The paper proposes numerical and approximate methods of solving a linear boundary value problem for the Fredholm integro‐differential equation and examines their convergence, stability, and accuracy.  相似文献   

9.
In this paper we consider different concepts of causality in filtered probability spaces. Especially, we consider a generalization of a causality relationship “G is a cause of J within H ” which was first given by Mykland (1986) and which is based on Granger’s definition of causality (Granger, Econometrica 37:424–438, 1969). Then we apply this concept on weak solutions of stochastic differential equations with driving semimartingales. We also show that the given causality concept is closely connected to the concept of extremality of measures and links Granger’s causality with the concept of adapted distribution. Finally, the concept of causality is applied on solution of martingale problem.  相似文献   

10.
In this paper we use measure theory to solve a wide range of the nonlinear programming problems. First, we transform a nonlinear programming problem to a classical optimal control problem with no restriction on states and controls. The new problem is modified into one consisting of the minimization of a special linear functional over a set of Radon measures; then we obtain an optimal measure corresponding to functional problem which is then approximated by a finite combination of atomic measures and the problem converted approximately to a finite-dimensional linear programming. Then by the solution of the linear programming problem we obtain the approximate optimal control and then, by the solution of the latter problem we obtain an approximate solution for the original problem. Furthermore, we obtain the path from the initial point to the admissible solution.  相似文献   

11.
We provide a simpler proof for a recent generalization of Nagumo’s uniqueness theorem by A. Constantin: On Nagumo’s theorem. Proc. Japan Acad., Ser. A 86 (2010), 41–44, for the differential equation x′ = f(t, x), x(0) = 0 and we show that not only is the solution unique but the Picard successive approximations converge to the unique solution. The proof is based on an approach that was developed in Z. S. Athanassov: Uniqueness and convergence of successive approximations for ordinary differential equations. Math. Jap. 35 (1990), 351–367. Some classical existence and uniqueness results for initial-value problems for ordinary differential equations are particular cases of our result.  相似文献   

12.
This article considers bifurcation of families of periodic solutions from equilibrium states for systems of differential equations with constant delays that, upon linearization at zero, become systems of ordinary differential equations. An averaging transformation is constructed to simplify solution of the bifurcation problem. There is an error in the title of Belan’s article in Dinamicheskie Sistemy, No. 11. 1992. It should read “On quasiperiodic solutions of semilinear parabolic equations”. Translated fromDinamicheskie Sistemy. Vol. 12, pp. 85–91, 1993.  相似文献   

13.
Partial differential equations for the unknown final state and initial costate arising in the Hamiltonian formulation of regular optimal control problems with a quadratic final penalty are found. It is shown that the missing boundary conditions for Hamilton’s canonical ordinary differential equations satisfy a system of first-order quasilinear vector partial differential equations (PDEs), when the functional dependence of the H-optimal control in phase-space variables is explicitly known. Their solutions are computed in the context of nonlinear systems with ℝ n -valued states. No special restrictions are imposed on the form of the Lagrangian cost term. Having calculated the initial values of the costates, the optimal control can then be constructed from on-line integration of the corresponding 2n-dimensional Hamilton ordinary differential equations (ODEs). The off-line procedure requires finding two auxiliary n×n matrices that generalize those appearing in the solution of the differential Riccati equation (DRE) associated with the linear-quadratic regulator (LQR) problem. In all equations, the independent variables are the finite time-horizon duration T and the final-penalty matrix coefficient S, so their solutions give information on a whole two-parameter family of control problems, which can be used for design purposes. The mathematical treatment takes advantage from the symplectic structure of the Hamiltonian formalism, which allows one to reformulate Bellman’s conjectures concerning the “invariant-embedding” methodology for two-point boundary-value problems. Results for LQR problems are tested against solutions of the associated differential Riccati equation, and the attributes of the two approaches are illustrated and discussed. Also, nonlinear problems are numerically solved and compared against those obtained by using shooting techniques.  相似文献   

14.
In this paper, we address the problem of the existence of superconvergence points of approximate solutions, obtained from the Generalized Finite Element Method (GFEM), of a Neumann elliptic boundary value problem. GFEM is a Galerkin method that uses non-polynomial shape functions, and was developed in (Babuška et al. in SIAM J Numer Anal 31, 945–981, 1994; Babuška et al. in Int J Numer Meth Eng 40, 727–758, 1997; Melenk and Babuška in Comput Methods Appl Mech Eng 139, 289–314, 1996). In particular, we show that the superconvergence points for the gradient of the approximate solution are the zeros of a system of non-linear equations; this system does not depend on the solution of the boundary value problem. For approximate solutions with second derivatives, we have also characterized the superconvergence points of the second derivatives of the approximate solution as the roots of a system of non-linear equations. We note that smooth generalized finite element approximation is easy to construct. I. Babuška’s research was partially supported by NSF Grant # DMS-0341982 and ONR Grant # N00014-99-1-0724. U. Banerjee’s research was partially supported by NSF Grant # DMS-0341899. J. E. Osborn’s research was supported by NSF Grant # DMS-0341982.  相似文献   

15.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

16.
In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.  相似文献   

17.
We consider a linear nonautonomous higher order ordinary differential equation and establish the positivity conditions and two-sided bounds for Green’s function for the two-point boundary value problem. Applications of the obtained results to nonlinear equations are also discussed.  相似文献   

18.
A linear, completely nonhomogeneous, generally nonlocal, multipoint problem is investigated for a second-order ordinary integro-differential equation with generally nonsmooth coefficients, satisfying some general conditions like p-integrability and boundedness. A system of three integro-algebraic equations named the adjoint system is introduced for the solution. The solvability conditions are found by the solutions of the homogeneous adjoint system in an “alternative theorem”. A version of a Green’s functional is introduced as a special solution of the adjoint system. For the problem with a nontrivial kernel also a notion of a generalized Green’s functional is introduced by a projection operator defined on the space of solutions. It is also shown that the classical Green and Cauchy type functions are special forms of the Green’s functional. The author passed away in 2006 prior to publication of the article.  相似文献   

19.
A complete asymptotic expansion is constructed for solutions of the Cauchy problem for nth order linear ordinary differential equations with rapidly oscillating coefficients, some of which may be proportional to ω n/2, where ω is oscillation frequency. A similar problem is solved for a class of systems of n linear first-order ordinary differential equations with coefficients of the same type. Attention is also given to some classes of first-order nonlinear equations with rapidly oscillating terms proportional to powers ω d . For such equations with d ∈ (1/2, 1], conditions are found that allow for the construction (and strict justification) of the leading asymptotic term and, in some cases, a complete asymptotic expansion of the solution of the Cauchy problem.  相似文献   

20.
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of the reaction-diffusion model of fractional order which describe the evolution of the bacterium Bacillus subtilis, which grows on the surface of thin agar plates. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号