首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

3.
The adsorption of Cd(II) onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. As the pH was increased, adsorption onto goethite occurred mainly in the pH range 5.5-8, whereas adsorption onto kaolinite occurred in two stages, separated by a plateau in the pH region 5.5 to 7. Adsorption onto illite increased steadily as the pH was increased, with far less Cd(II) adsorbing onto illite than onto goethite or kaolinite per m(2) of mineral surface area. Potentiometric titrations of suspensions of each mineral, with and without Cd(II) present, were also completed. Results from all three types of experiments were modeled using an extended constant- capacitance surface complexation model. The reactions [Formula: see text] [Formula: see text] and [Formula: see text] best described Cd(II) adsorption onto goethite, while [Formula: see text] and [Formula: see text] best described Cd(II) adsorption onto kaolinite. A combination of the first, second, and fourth of these reactions best fitted the data for Cd(II) adsorption onto illite. In each case the model fitted all experimental data well. The results suggest that adsorption onto the variable charge (SOH) sites on illite more closely resembles adsorption onto goethite than onto kaolinite.  相似文献   

4.
The scavenging of UO2 2+ using 4-sulfonic calix[6]arene in the presence of a strong adsorbent was studied as a function of pH. The adsorbent selected was goethite because of its strong affinity for UO2 2+ and its abundance in natural soils. In order to understand the underlying chemistry of the scavenging process, the adsorption of UO2 2+ and 4-sulfonic calix[6]arene onto goethite, respectively, and the extraction of adsorbed UO2 2+ from goethite surface were modeled using the triple-layer model. The model well explained the pH dependence of the adsorption and extraction processes. This work showed that maximum extraction was obtained around pH 10.5 in the presence of 12g/l goethite in the case of a 1:3T U(VI):T calixareneratio.  相似文献   

5.
Batch type experiments of U(VI) sorption on a reference montmorillonite(SWy-2) were carried out over wide ranges of pH, ionic strength, and totalU(VI) concentration. The influences of these factors on the sorption behaviorof U(VI) were analyzed to gain a macroscopic understanding of the sorptionmechanism. The sorption of U(VI) on montmorillonite showed a distinct dependencyon ionic strength. When it was low (0.01 or 0.001M), almost all of the totalU(VI) was sorbed over the whole pH range studied, therefore, the dependencyon pH was not clear. But the sorption of U(VI) on montmorillonite showed asorption pH edge in the high ionic strength condition (0.1M), like those onother clay minerals, kaolinite and chlorite. A mechanistic model was establishedby considering the mineral structure of montmorillonite together with ourprevious EPR result, which successfully explained the U(VI) sorption on montmorilloniteover the whole range of experimental conditions. The model describes the U(VI)sorption on montmorillonite as simultaneous and competitive reactions of ionexchange and surface complexation, whose relative contribution to the totalsorption depends on pH and ionic strength. At low ionic strength and low pHconditions, ion exchange was the dominant mechanism for U(VI) sorption onmontmorillonite. At high ionic strength and high pH conditions, surface complexationwas the dominant  相似文献   

6.
Investigation of U(VI) desorption from the natural sediment of Oak Ridge Field Research Center saprolite is of great importance to predict the fate and transport of U(VI) in the subsurface environment. After treatment by the dithonite- citrate-bicarbonate method, only 20% of U(VI) was extracted by 0.1 mol/L HNO3 solution, indicating that the predominate adsorbed carrier of U(VI) in natural sediment was iron (hydr)oxides. Further evidence collected through a high resolution TEM investigation such as goethite observed in clay minerals. The desorption of U(VI) from PRFRC saprolite was satisfactorily fitted by surface complexation modeling at a low NaHCO3 concentration starting from 0.001 to 0.1 mol/L, whereas appreciable over-estimation was observed at high concentrations of NaHCO3. The uncertainty analysis method used in this study was an expanded uncertainty analysis method, and estimates with a 95% confidence interval (c) were obtained for these test data points. These observations revealed that the goethite with clay minerals played the vital role in U(VI) sorption and desorption behaviors in subsurface sediments.  相似文献   

7.
甲基对硫磷和西维因在粘土矿物表面的吸附解吸特性   总被引:2,自引:0,他引:2  
研究了甲基对硫磷和西维因在蒙脱石、高岭石和针铁矿表面的吸附 解吸特征。结果表明,Langmuir方程能较好的描述甲基对硫磷和西维因在3种矿物表面的等温吸附过程,且蒙脱石对农药的最大吸附量大于高岭石和针铁矿。用动力学方程对2种农药的吸附过程进行拟合,Elovich方程、双常数方程和一级动力学方程均得到较好的结果,其中Elovich方程为最佳模型,相关系数(R2)在0.93~0.98之间,说明该吸附为非均相扩散过程。3种矿物对甲基对硫磷和西维因的吸附强度均为蒙脱石>高岭石>针铁矿。  相似文献   

8.
The adsorption of citric acid onto goethite, kaolinite, and illite was measured as a function of pH (adsorption edges) and concentration (adsorption isotherms) at 25 degrees C. The greatest adsorption was onto goethite and the least onto illite. Adsorption onto goethite was at a maximum below pH 5 and decreased as the pH was increased to pH 9. For kaolinite, maximum adsorption occurred between pH 4.5 and pH 7, decreasing below and above this pH region, while for illite maximum adsorption occurred between about pH 5 and pH 7, decreasing at both lower and higher pH. ATR-FTIR spectra of citrate adsorbed to goethite at pH 4.6, pH 7.0, and pH 8.8 were compared with those of citrate solutions between pH 3.5 and pH 9.1. While the spectra of adsorbed citrate resembled those of the fully deprotonated solution species, there were significant differences. In particular the C[bond]O symmetric stretching band of the adsorbed species at pH 4.6 and 7.0 changed shape and was shifted to higher wave number. Further spectral analysis suggested that citrate adsorbed as an inner-sphere complex at pH 4.6 and pH 7.0 with coordination to the surface most probably via one or more carboxyl groups. At pH 8.8 the intensity of the adsorbed bands was much smaller but their shape was similar to those from the deprotonated citrate solution species, suggesting outer-sphere adsorption. Insufficient citric acid adsorbed onto illite or kaolinite to provide spectroscopic information about the mode of adsorption onto these minerals. Data from adsorption experiments, and from potentiometric titrations of suspensions of the minerals in the presence of citric acid, were fitted by extended constant-capacitance surface complexation models. On the goethite surface a monodentate inner-sphere complex dominated adsorption below pH 7.9, with a bidentate outer-sphere complex required at higher pH values. On kaolinite, citric acid adsorption was modeled with a bidentate outer-sphere complex at low pH and a monodentate outer-sphere complex at higher pH. There is evidence of dissolution of kaolinite in the presence of citric acid. For illite two bidentate outer-sphere complexes provided a good fit to all data.  相似文献   

9.
This study investigates Cu and Zn removal onto binary mixed mineral sorbents from simulated wastewater, relevant to streams impacted by acid mine drainage and effluents. Mixed suspensions of kaolinite/montmorillonite and kaolinite/goethite exhibited different sorption behavior from the single mineral components, reducing Cu and Zn removal (except Cu sorbed on montmorillonite/goethite) over the range of pH investigated. Cu and Zn removal by the electrolyzed systems showed a complex response to increased ionic strength, which increased solid concentration, leading to lower Cu and Zn sorption. Enhanced Cu sorption on the montmorillonite/goethite as age increased may be attributed to increased hydroxylation of the mineral surface resulting in the formation of new reactive sites.  相似文献   

10.
The adsorption of atrazine and two model compounds,2-chloropyrimidine and 3-chloropyridine on clay minerals(bentonite, montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has beenstudied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressureliquid chromatography (HPLC) and X-ray diffraction (XRD).3-Chloropyridine, 2-chloropyrimidine and atrazine were adsorbedthrough hydrogen bonding on bentonite, montmorillonite, humic acid and soil. In addition tohydrogen bonding, protonation of 3-chloropyridine and atrazine was also observed.In the adsorption of 2-chloropyrimidine on bentonite and montmorillonitean ion exchange mechanism also occurred. No adsorption of 3-chloropyridine or 2-chloropyrimidine wasobserved on the kaolinite clay mineral.Both the clay minerals and organic matter of soil contribute tothe adsorption of organic compounds on soil but the clay minerals bentonite and montmorilloniteplay a major role in their adsorption on soil.  相似文献   

11.
A systematic investigation of the adsorption of oleic acid was under-taken with various minerals and surface treated minerals, viz., kaolinite, treated kaolinites, montmorillonites, talcs, gibbsites, calcites and a treated calcite. Adsorption onto kaolinite, two of the treated kaolinites (amine and MgSiO3 treated), talcs and gibbsites was well correlated by the Langmuir model, while adsorption on the treated calcite was well correlated by the Freundlich model. Adsorption on a cationic polymer-treated kaolinite was explained in terms of a cooperative mechanism. Adsorption onto montmorillonites was explained in terms of a penetrative mechanism involving exchangeable cations.Oleic acid adsorption was compared with triolein adsorption on one of the montmorillonites, two adsorbents produced by the surface treatment of this montmorillonite, and one of the talcs. The triolein adsorption of the montmorillonite was considerably less than its oleic acid adsorption, and was explained in terms of a cooperative mechanism. Triolein adsorption of the treated montmorillonites, and the talc was well correlated by the Langmuir model. Larger amounts of triolein were taken up by the treated montmorillonites than by the untreated montmorillonite. The triolein adsorption of the talc was greater than its oleic acid adsorption.  相似文献   

12.

Polymeric matrices composed of N,N′-Methylenebis(acrylamide)/glycidyl methacrylate was prepared and modified producing two resins (GMA/MBA/OH and GMA/MBA/SO3H). The adsorption of U(VI) ions onto the modified acrylamide resins was studied from synthetic and granite samples. For better understanding around the uranium mineralization and the rock-forming minerals of the hosted granitic rocks, to facilitate the choice of the appropriate ore-processing techniques, it was necessary to identify the mineral composition and the radiometric specifications of the used granitic rock. The synthesized adsorbents revealed a promising selective adsorption toward the U(VI) ions from its bearing solutions even with the competence of other cations.

  相似文献   

13.
Oxide surface coatings are ubiquitous in the environment, but their effect on the intrinsic metal uptake mechanism by the underlying mineral surface is poorly understood. In this study, the zinc (Zn) sorption complexes formed at the kaolinite, goethite, and goethite-coated kaolinite surfaces, were systematically studied as a function of pH, aging time, surface loading, and the extent of goethite coating, using extended X-ray absorption fine structure (EXAFS) spectroscopy. At pH 5.0, Zn partitioned to all sorbents by specific chemical binding to hydroxyl surface sites. At pH 7.0, the dominant sorption mechanism changed with reaction time. At the kaolinite surface, Zn was incorporated into a mixed metal Zn-Al layered double hydroxide (LDH). At the goethite surface, Zn initially formed a monodentate inner-sphere adsorption complex, with typical Zn-Fe distances of 3.18 A. However, with increasing reaction time, the major Zn sorption mechanism shifted to the formation of a zinc hydroxide surface precipitate, with characteristic Zn-Zn bond distances of 3.07 A. At the goethite-coated kaolinite surface, Zn initially bonded to FeOH groups of the goethite coating. With increasing aging time however, the inclusion of Zn into a mixed Zn-Al LDH took over as the dominant sorption mechanism. These results suggest that the formation of a precipitate phase at the kaolinite surface is thermodynamically favored over adsorption to the goethite coating. These findings show that the formation of Zn precipitates, similar in structure to brucite, at the pristine kaolinite, goethite, and goethite-coated kaolinite surfaces at near neutral pH and over extended reaction times is an important attenuation mechanism of metal contaminants in the environment.  相似文献   

14.
The composite ion exchangers were tested for their ability to remove UO2 2+ from aqueous solutions. Polyacrylonitrile (PAN) composites having natural zeolite, clinoptilolite, and synthetic zeolite, zeolite X, were used as an adsorbents. The influences of pH, U(VI) concentration, temperature and contact time on the sorption behavior of U(VI) were investigated in order to gain a macroscopic understanding of the sorption mechanism. The optimum adsorption conditions were determined for two composites. The sorption behaviors of uranium on both composites from aqueous systems have been studied by batch technique. Parameters on desorption were also investigated to recover the adsorbed uranium.  相似文献   

15.
Bacterial–mineral composites are important in the retention of heavy metals due to their large sorption capacity under a wide range of environmental conditions. This study provides the first quantitative comparison of the metal-binding capacities of P. putida CZ1–goethite composite to its individual components. When the same amount (on a dry weight basis) of living and nonliving cells of P. putida CZ1, goethite or their composites was separately exposed to solutions of 0.5 mM Cu(II) and Zn(II) in 0.01 M KNO3, the living cells removed the largest quantity of heavy metals. The results of calculated metal retention values indicated that the adsorption of goethite to bacteria has not mask or neutralize chemically reactive adsorption sites normally available to metal ions. Moreover, the nonliving cells–goethite composite retained approximately 82% more Zn than that predicted by their individual behavior. The preferential association of Zn with P. putida CZ1 was observed by TEM and EDS analyses of a mixture consisting of the bacteria and goethite. Desorption of Cu and Zn with 1.0 M CH3COOK solution from P. putida CZ1 and goethite indicated the differences in the functional groups able to bind heavy metals.  相似文献   

16.
The uptake of anthracene from dilute aqueous solutions onto goethite and kaolinite was investigated at 25 degrees C, first in the absence and then in the presence of three benzene carboxylic acids: phthalic acid (benzene-1,2-dicarboxylic acid), trimesic acid (-1,3,5-), and mellitic acid (-1,2,3,4,5,6-). Carboxylic acid concentrations were 0.20, 0.10, and 0.05 mM. Anthracene (0.20 microM) did not adsorb strongly onto the pure mineral surfaces, but in the presence of phthalic acid a substantial increase in anthracene uptake was observed, particularly for the goethite systems. Trimesic and mellitic acids did not enhance anthracene uptake. Phthalate and proton adsorption data have been used to model phthalate adsorption onto the mineral surfaces using an extended constant capacitance surface complexation model. This model was then successfully adapted to account for the observed increase in anthracene uptake, where anthracene molecules were assumed to interact with adsorbed phthalate. We propose that the enhancement of anthracene adsorption in the presence of phthalic acid is due to an increase in the hydrophobicity of the mineral surface once phthalic acid molecules adsorb. The same effect was not observed for the other benzene carboxylates because of their greater polarity.  相似文献   

17.
The effects of iron on uranium oxidation states during sample dissolution were studied. A mineral acid mixture in anaerobic conditions was used for the dissolution the sample and the uranium oxidation states were determined by ion exchange. The first experiments were performed with pure iron chloride compounds. In the second stage, study was made of common iron-containing minerals. Uranium oxidation states were affected when the content of iron compound was as low as 10-5M. In the case of the natural minerals, pyrite caused uranium to change to an increasingly reduced state, whereas goethite caused it to change to an increasingly oxidized state as the amount of mineral was increased. The interferences of the silicates fell between those of pyrite and goethite. The results indicate that a wide range of common bulk rocks with less than 20 wt% of iron-containing minerals can be reliable chemically analyzed for uranium oxidation state.  相似文献   

18.
Adsorption of Pseudomonas putida on clay minerals and iron oxide   总被引:6,自引:0,他引:6  
Adsorption of Pseudomonas putida on minerals including montmorillonite, kaolinite and goethite was studied. The adsorption isotherms of P. putida on the examined minerals conformed to the Langmuir equation. The amount of P. putida adsorbed followed the order: goethite > kaolinite > montmorillonite. A greater extent of P. putida adsorption on minerals was observed in the range of temperature from 15 to 35 °C. The adsorption of P. putida on minerals decreased with the increase of pH from 3.0 to 10.0. Magnesium ion was more efficient than sodium ion in promoting P. putida adsorption on minerals. The results suggest that electrostatic interactions play a vital role in P. putida adsorption by soil colloidal factions. The information obtained in this study is of fundamental significance for the understanding of the survival and transport of bacteria in soil systems.  相似文献   

19.
Adsorption of Pseudomonas putida on kaolinite, montmorillonite and goethite was studied in the presence of organic ligands and phosphate. Citrate, tartrate, oxalate and phosphate showed inhibitive effect on P. putida adsorption by three minerals in a broad range of anion concentrations. The highest efficiencies of the four ligands in blocking the adsorption of P. putida on goethite, kaolinite and montmorillonite were 58–90%, 35–76% and 20–48%, respectively. The ability of organic ligands in prohibiting the binding of P. putida cells to the minerals followed the sequence of citrate > tartrate > oxalate > acetate. The significant suppressive effects on P. putida adsorption were ascribed to the increased negative charges by adsorbed ligands and the competition of ligands with bacterial surface groups for binding sites. The inhibitive effects on P. putida adsorption by organic ligands were also dependent on the steric hindrance of the molecules. Acetate presented promotive effect on P. putida adsorption by kaolinite and goethite at low anion concentrations. The results obtained in this study suggested that the adsorption of bacteria in soils especially in the rhizosphere can significantly be impacted by various organic and inorganic anions.  相似文献   

20.
研究了恶臭假单胞菌在蒙脱石、高岭石和针铁矿表面的吸附特征,探讨了细菌在不同粘粒矿物存在下的生长代谢活性,及对甲基对硫磷的降解动力学.结果表明, 三种矿物对细菌的吸附强度为针铁矿>高岭石>蒙脱石.当甲基对硫磷浓度较低时(10 mg/L), 游离菌的降解能力始终比固定菌强;在高浓度(20~40 mg/L)下, 固定菌对农药的降解能力起初(前9 h)高于游离菌, 随后渐渐低于游离菌.不同矿物固定的细菌, 其降解能力为蒙脱石>高岭石>针铁矿.蒙脱石对细菌的亲和力最弱, 但它对细菌的代谢活性有促进作用, 有利于农药的生物降解; 而针铁矿与细菌的结合强度最大, 细菌活性受到抑制, 不利于农药的降解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号