首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption properties of sodium-chloride monolayers and bilayers on the flat (1 0 0) surface and the stepped (3 1 1) surface of copper have been investigated using density functional calculations. We have identified both electrostatic and covalent contributions to the bonding between the overlayers and the substrate. The larger corrugation of the electrostatic potential on the stepped surface than on the flat surface makes the adsorption stronger on the stepped surface than on the flat surface and favours the adsorption of the chlorine atom on top of a copper atom in the steps of the stepped surface. A further stabilisation of this bonding geometry is obtained from the formation of weak covalent bond between these two atoms. A simple “image charge” model for the bonding is found to break down in this case. The large geometric buckling of the monolayer on the stepped surface is predicted to give rise to a large difference between the work functions of the monolayer and the bilayer.  相似文献   

2.
The adsorption and dissociation of water monomer and dimer on stepped Co(0001) surface were studied by means of first-principles calculations. Present results indicate that the adsorption strength of water is greatly enhanced by the presence of step, while the activity of water monomer dissociation does not exhibit a noticeable improvement. Nevertheless, water dimer partial dissociation on stepped Co(0001) is more active than on flat Co(0001), and the promotion of oxygen atom on O–H bond cleavage of H2O is more prominent on stepped surface than on flat Co(0001). The findings reveal the importance of low coordinated surface atoms on metallic catalysts and the vital role of surface rippling on water dissociation. Together with previous reports, the activity of water dissociation on cobalt-based catalytic surfaces depends dominantly on O-containing species like oxygen atom, H2O or hydroxyl.  相似文献   

3.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

4.
Ammonia adsorption, desorption and decomposition to H2 and N2 has been studied on the flat (111) and stepped (557) single crystal faces of platinum using molecular beam surface scattering techniques. Both surfaces show significant adsorption with sticking coefficients on the order of unity. The stepped (557) surface is 16 times more reactive for decomposition of ammonia to N2 and H2 than the flat (111) surface. Kinetic parameters have been determined for the ammonia desorption process from the Pt(111) surface. The mechanism of ammonia decomposition on the (557) face of platinum has been investigated.  相似文献   

5.
The adsorption behavior of hydrogen and oxygen on the stepped Ni(311) surface has been investigated by HREELS. A series of metastable phases was found for hydrogen adsorption at low temperatures with a succession of different adsorption sites indicated by the following loss peaks: 55 and 149 meV for the threefold site, shifting with higher coverage to 65 and 155 meV, respectively; 40 and 90 meV for the fourfold site, shifting to 35 and 85 meV with coverage; and 110 and 124 meV for an additional site between close packed rows. Room temperature adsorption of hydrogen leads to the reconstruction of the surface with occupation of three- and fourfold sites, represented by loss peaks at 60 and 145 meV for the threefold site and 74 meV for the fourfold site. This phase is the thermodynamically stable one. Oxygen is most likely initially adsorbed on a bridge site (loss peak at 66 meV). The stepped surface is already oxidized at very low exposures to oxygen, as seen by the characteristic vibration for oxide islands at 55 meV and later by the Fuchs-Kliewer mode of NiO at 68 meV.  相似文献   

6.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles.  相似文献   

7.
李娜  贺西平  杨佳婷 《声学学报》2018,43(2):209-216
研究了一种同相弯曲振动方板阶梯辐射体。以边长50 mm的方形平板为例,材料为钢,厚度为6mm。其第四阶本征振型的频率为19332 Hz,用同频率的纵振换能器激励其中心,会出现节线与边长成45°夹角的响应(本征振型中无)。为了获得辐射体辐射声场的高指向性,在四个板角与四条节线围成的等腰直角三角形区域加阶梯,可将平板辐射体改进成阶梯辐射体。计算得到阶梯辐射体的指向性比平板辐射体的指向性尖锐,与方板活塞辐射体的指向性相似。实验测试辐射体指向性与计算结果基本一致。进一步计算发现,方板阶梯辐射体与线性尺寸相同的矩形、圆盘阶梯辐射体比较,其频率低,指向性同样尖锐,可望应用于超声测距、料位测试中。   相似文献   

8.
白清顺  沈荣琦  何欣  刘顺  张飞虎  郭永博 《物理学报》2018,67(3):30201-030201
石墨烯性能的发挥受石墨烯表面形貌的影响,而石墨烯表面形貌则与基底密切相关.石墨烯在纳米微结构表面的吸附与剥离可以为石墨烯的功能化制备和转移提供理论基础.分子动力学模拟能提供石墨烯在纳米微结构表面的吸附构型和剥离特性等详细信息,可以弥补实验的不足.本文利用LAMMPS分子动力学模拟软件,从吸附能角度研究了石墨烯在矩形微结构表面的黏附特性,并进一步探讨了石墨烯从矩形微结构表面剥离的行为.研究表明:石墨烯的吸附构型在矩形微结构表面的转变是连续的,但由部分贴合状态向完全贴合状态的转变是一个反复的过程,当石墨烯完全贴合微结构表面时吸附能最大;从微结构表面剥离石墨烯时,剥离力会出现周期性的波动.剥离过程表现为两种形式:完全贴合时,石墨烯是直接滑过槽底;而当悬浮构型或部分贴合构型时,石墨烯是直接从微结构表面分离.本文给出了平均剥离力随微结构尺寸参数变化的理论公式,该公式与模拟结果拟合较好.此外,随着剥离角度的变大,平均剥离力先变大后变小,从平整基底表面剥离具有Stone-Wales缺陷结构的石墨烯会使剥离力变大.研究结果可为探究石墨烯在纳米微结构表面的剥离行为、揭示其黏附机理提供理论参考.  相似文献   

9.
We use a periodic density functional theory (DFT) code to study the adsorption of CH3 and H, as well as their co-adsorption on a Ni(111) surface with and without Ni ad-atom, at a surface coverage of 0.25 monolayer (ML). We systematically investigate the site preference for CH3 and H. Then we combine CH3 and H in many co-adsorbed configurations on both surfaces. Methyl and hydrogen adsorption on a flat Ni(111) surface favours the hollow site over the top site. The presence of a Ni ad-atom stabilizes the adsorption of CH3 better than a flat surface, while hydrogen is more stable on a flat Ni(111) surface. When H and CH3 are co-adsorbed at nearest Ni neighbours on the (111) surface, their interaction is always repulsive. However, the dissociative adsorption of CH4 is stabilised when the fragments are infinitely separated. For the co-adsorbed fragments CH3 and H, in the presence of an ad-atom, the repulsive interaction is lowered, so that the dissociative form of CH4 is locally stable.  相似文献   

10.
In this work, the adsorption of several unsaturated hydrocarbon molecules on a stepped Pd(4 2 2) surface was studied. Using a periodic method based on the Density Functional Theory (DFT) formalism, different adsorption geometries for ethylene, three butene isomers (cis/trans-2-butene and 1-butene), acetylene and 2-butyne were investigated. The results were compared with those obtained for a free defect surface as Pd(1 1 1). The 1-butene is more stable on the free defect surface than on Pd(4 2 2). On the stepped surface, the olefins adsorb tilted towards the step and increases, in almost all the cases, the magnitude of the adsorption energy. Conversely, the 3-fold site is the most stable for the alkynes adsorption on the stepped surface, as it was found on Pd(1 1 1). The analysis of the dipole moment change indicate a charge transfer from the double bond of the olefin to the metallic surface, being higher for the Pd(1 1 1) surface. In case of the alkynes, an important back-donation is produced. Except the alkynes and the 1-butene molecule, the results show the preference of ethylene and cis/trans-2-butene to be adsorbed on the stepped surface. These observations are related with experimental catalytic results.  相似文献   

11.
The electronic structure of the d band of both flat and stepped Pt surfaces is investigated within the tight-binding approximation, using a moment method. A sharp surface virtual bound state peak is found in the local density of states at the protruding edge of the stepped surfaces and the symmetry of states near the Fermi level are found to be rather dependent on the geometry of the surface. Possible connections with experiments are briefly discussed.  相似文献   

12.
The adsorption and desorption of oxygen on stepped tungsten surfaces with orientations close to the (110) orientation and steps parallel to the most densely packed crystal direction ([111]) is studied with low energy electron diffraction, Auger electron spectroscopy, work function measurements and thermal desorption spectroscopy. With increasing deviation from the (110) orientation, an increasing preference for the formation of the p(2 × 1) domain with the densely packed direction parallel to the steps is noted. The adsorption kinetics does not differ markedly from that on the flat (110) surface, however the desorption behaviour at low coverages (θ < 0.3) is quite different. The results are interpreted in terms of the dissociation of a mobile precursor at terrace and step sites, the competition between the two domains during their growth and a step-induced premature transition to the complex structure observed on flat (110) surfaces at θ ? 8. The steps are believed to play also a significant role in desorption.  相似文献   

13.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

14.
We report first-principles total-energy calculations that provide energetics and electronic structures of adsorbed carbon nanotubes (CNTs) on stepped Si(001) surfaces. We find that adsorption energies strongly depend on the directions of CNTs, and that there are several metastable adsorption sites both on terraces and near step edges. We also find that the electronic structure of adsorbed metallic CNTs becomes semiconducting or remains metallic, depending on the adsorption site. Charge redistribution upon adsorption is prominent mainly at the CNT-surface interface.  相似文献   

15.
The Budd-Vannimenus theorem for jellium surface is generalized for stepped surfaces of jellium. Our sum rules show that the average value of the electrostatic potential over the stepped jellium surface equals the value of the potential at the corresponding flat jellium surface. Several sum rules are tested with numerical results obtained within the Thomas-Fermi model of stepped surfaces.  相似文献   

16.
Using periodic density functional theory we studied adsorption of H2S, HS, S and H on the Fe(310) stepped surface, comparing our results with those on Fe(100). H2S is predicted to weakly adsorb on all high-symmetry sites, with the bridge site at the step edge as preferred one, oriented perpendicularly to the (100) terraces with the two H atoms pointing out of the surface. Adsorption of HS, S, and H is more stable on the bridge, four-fold hollow, and three-fold hollow sites, respectively. The detailed analysis of the computed local density of states show common trends with the behavior of adsorption energies and is able to account for energy differences of all species adsorbed on Fe(100) and Fe(310).  相似文献   

17.
The chemisorption of hydrogen, oxygen, carbon, carbon monoxide and ethylene was studied by low-energy electron diffraction on ordered stepped surfaces of platinum which were cut at angles less than 10° from the (111) face. The chemisorption characteristics of stepped platinum surfaces are markedly different from those of low index platinum surfaces and they are also different from each other. Hydrogen and oxygen which do not chemisorb easily on the (111) and (100) crystal faces chemisorb readily and at relatively low temperatures and pressures on the stepped platinum surfaces used in this study. In contrast to the ordered adsorption of carbon monoxide and ethylene on low index faces, the adsorption was disordered on the stepped surfaces and there is evidence for dissociation of the molecule. Carbon formed several ordered surface structures and caused faceting on the stepped surface, which are not observed on low index platinum surfaces. There appears to be a much stronger interaction of chemisorbed gases with stepped surfaces than with low index planes that must be caused by the differing atomic structures at the steps. Evidence for the differing reactivities of the two stepped surfaces are also discussed.  相似文献   

18.
Work function measurements have been performed during the deposition of W on the (110)W plane and several stepped W surfaces with (110) terraces and different terrace width. For each sample the work function decreases with growing coverage. The total work function drop diminishes strongly with decreasing terrace width. The results are interpreted in terms of a reduced nucleation process on stepped surfaces as compared to the flat (110) plane. The step edges act as sinks for the deposited adatonis and cause in their proximity a “dead” zone for nuclei formation. Details of the work function change with coverage are discussed in terms of an edge roughening effect on stepped surfaces.  相似文献   

19.
The notion of “active sites” is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.  相似文献   

20.
To investigate surface segregation in yttria-stabilized zirconia (YSZ), DFT energies describing surface energy as a function of yttrium lattice position were used to parameterize a reactive-force field (ReaxFF). We used ReaxFF to perform Monte Carlo (MC) simulated annealing to sample structural configurations of flat YSZ (111) and vicinal YSZ (111) stepped surfaces. We evaluated yttrium surface segregation, oxygen vacancy position, and surface step composition for flat and stepped YSZ surfaces. It is thermodynamically favorable for yttrium atoms to segregate to the surface of YSZ, and specifically to step edge sites. Surface saturation of yttrium occurs at approximately 40% (40:60 Y:Zr ratio) while yttrium concentration at the step edge does not approach a saturation value, suggesting that steps on the YSZ surface are mainly yttria-terminated. We found that it is thermodynamically favorable for oxygen vacancies to occupy positions in the subsurface layer of YSZ, and a higher fraction of vacancies occupy positions NN to Y than NN to Zr. Yttrium segregation to step edges on the YSZ surface does not lower the surface formation energy of the stepped surface below that of the flat (111) termination, suggesting that the stability of YSZ surface steps observed experimentally is due to kinetic barriers for surface re-ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号