首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s−1. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported.  相似文献   

2.
 The apparent viscosities of purely viscous non-Newtonian fluids are shear rate dependent. At low shear rates, many of such fluids exhibit Newtonian behaviour while at higher shear rates non-Newtonian, power law characteristics exist. Between these two ranges, the fluid's viscous properties are neither Newtonian or power law. Utilizing an apparent viscosity constitutive equation called the “Modified Power Law” which accounts for the above behavior, solutions have been obtained for forced convection flows. A shear rate similarity parameter is identified which specifies both the shear rate range for a given fluid and set of operating conditions and the appropriate solution for that range. The results of numerical solutions for the friction factor–Reynolds number product and for the Nusselt number as a function of a dimensionless shear rate parameter have been presented for forced fully developed laminer duct flows of different cross-sections with modified power law fluids. Experimental data is also presented showing the suitability of the “Modified Power Law” constitutive equation to represent the apparent viscosity of various polymer solutions. Received on 21 August 2000  相似文献   

3.
High shear rate viscometry   总被引:1,自引:0,他引:1  
We investigate the use of two distinct and complementary approaches in measuring the viscometric properties of low viscosity complex fluids at high shear rates up to 80,000 s?1. Firstly, we adapt commercial controlled-stress and controlled-rate rheometers to access elevated shear rates by using parallel-plate fixtures with very small gap settings (down to 30 μm). The resulting apparent viscosities are gap dependent and systematically in error, but the data can be corrected—at least for Newtonian fluids—via a simple linear gap correction originally presented by Connelly and Greener, J. Rheol, 29(2):209–226, 1985). Secondly, we use a microfabricated rheometer-on-a-chip to measure the steady flow curve in rectangular microchannels. The Weissenberg–Rabinowitsch–Mooney analysis is used to convert measurements of the pressure-drop/flow-rate relationship into the true wall-shear rate and the corresponding rate-dependent viscosity. Microchannel measurements are presented for a range of Newtonian calibration oils, a weakly shear-thinning dilute solution of poly(ethylene oxide), a strongly shear-thinning concentrated solution of xanthan gum, and a wormlike micelle solution that exhibits shear banding at a critical stress. Excellent agreement between the two approaches is obtained for the Newtonian calibration oils, and the relative benefits of each technique are compared and contrasted by considering the physical processes and instrumental limitations that bound the operating spaces for each device.  相似文献   

4.
A quasi-static asymptotic analysis is employed to investigate the elastic effects of fluids on the shear viscosity of highly concentrated suspensions at low and high shear rates. First a brief discussion is presented on the difference between a quasi-static analysis and the periodic-dynamic approach. The critical point is based on the different order-of-contact time between particles. By considering the motions between a particle withN near contact point particles in a two-dimensional “cell” structure and incorporating the concept of shear-dependent maximum packing fraction reveals the structural evolution of the suspension under shear and a newly asymptotic framework is devised. In order to separate the influence of different elastic mechanisms, the second-order Rivlin-Ericksen fluid assumption for describing normal-stress coefficients at low shear rates and Harnoy's constitutive equation for accounting for the stress relaxation mechanism at high shear rates are employed. The derived formulation shows that the relative shear viscosity is characterized by a recoverable shear strain,S R at low shear rates if the second normal-stress difference can be neglected, and Deborah number,De, at high shear rates. The predicted values of the viscosities increase withS R , but decrease withDe. The role ofS R in the matrix is more pronounced than that ofDe. These tendencies are significant when the maximum packing fraction is considered to be shear-dependent. The results are consistent with that of Frankel and Acrivos in the case of a Newtonian suspension, except for when the different divergent threshhold is given as [1 ? (Φ/Φ m )1/2] ? 1.  相似文献   

5.
The behaviour of an aqueous poly(ethylene oxide) sucrose solution and of a suspension of glass beads in a similar solution has been examined in elongational flow using a spinline rheometer. Over the accessible strain-rate range of ca. 1 to 10 s?1 these fluids behaved essentially as elastic materials whereas, at similar strain rates in shear, they show shear-thinning behaviour.  相似文献   

6.
The flow of two concentric non-Newtonian fluids, under constant pressure gradient in a circular tube, is studied by linear stability analysis. The viscosities of the two fluids are different and their dependence on shear stress is described by the Ellis model. It is found that the steady state flow can be unstable, depending on certain combinations of the values of physical parameters, to infinitesimal axisymmetric disturbances of large wavelengths, for any Reynolds number however small. The flow is predominantly stable if the inner fluid is more viscous and predominantly unstable if the outer fluid is more viscous. Stronger dependence of viscosity on shear stress can both stabilize and destabilize the flow. Interfacial tension is also destabilizing when the Weber number is small than about 104.  相似文献   

7.
The rheological and structural properties of perfluoropolyether (PFPE) lubricant films including viscosity, shear stress, and birefringence were measured at relatively low to extremely high shear rates using a rotational optical rheometer. The viscosity of various films with different thicknesses exhibit Newtonian behavior up to a shear rate 1 × 104 s−1, with a transition to shear-thinning behavior obvious at higher shear rates. Birefringence of these films was also measured for the first time, and these results indicate chain alignment with shear in the shear-thinning regime. The shear rate at which alignment occurs is similar to that of the onset of shear thinning. This correlation between chain alignment and shear thinning provides direct evidence that the ability of PFPEs to lubricate hard drives at high shear rates is a direct consequence of the ability of the applied shear field to align the molecules on a molecular level.  相似文献   

8.
 We investigate the variations in the shear stress and the first and second normal stress differences of suspensions formulated with viscoelastic fluids as the suspending medium. The test materials comprise two different silicone oils for the matrix fluids and glass spheres of two different mean diameters spanning a range of volume fractions between 5 and 25%. In agreement with previous investigations, the shear stress–shear rate functions of the viscoelastic suspensions were found to be of the same form as the viscometric functions of their matrix fluids, but progressively shifted along the shear rate axis to lower shear rates with increasing solid fraction. The normal stress differences in all of the suspensions examined can be conveniently represented as functions of the shear stress in the fluid. When plotted in this form, the first normal stress difference, as measured with a cone and plate rheometer, is positive in magnitude but strongly decreases with increasing solid fraction. The contributions of the first and the second normal stress differences are separated by using normal force measurements with parallel plate fixtures in conjunction with the cone-and-plate observations. In this way it is possible for the first time to quantify successfully the variations in the second normal stress difference of viscoelastic suspensions for solid fractions of up to 25 vol.%. In contrast to measurements of the first normal stress difference, the second normal stress difference is negative with a magnitude that increases with increasing solid content. The changes in the first and second normal stress differences are also strongly correlated to each other: The relative increase in the second normal stress difference is equal to the relative decrease of the first normal stress difference at the same solid fraction. The variations of the first as well as of the second normal stress difference are represented by power law functions of the shear stress with an unique power law exponent that is independent of the solid fraction. The well known edge effects that arise in cone-and-plate as well as parallel-plate rheometry and limit the accessible measuring range in highly viscoelastic materials to low shear rates could be partially suppressed by utilizing a custom- designed guard-ring arrangement. A procedure to correct the guard-ring influence on torque and normal force measurements is also presented. Received: 20 December 2000 Accepted: 7 May 2001  相似文献   

9.
The application of an external field (magnetic or electric) to suspensions of particles in a carrier liquid often causes a dramatic increase in the flow resistance. The transient stress response of these systems during the start-up of shear flow was studied as a function of the shear rate, using a system of carbonyl iron particles dispersed in paraffinic spindle oil under magnetic flux densities up to 0.57 T. It was found that initially the stress increased in proportion to the applied strain, reaching a plateau value at a characteristic strain of 0.2. Similar strain dependence of the transient stress behaviour was observed for shear rates spanning the range 0.01 s–1 to 10 s–1, suggesting that strain-governed deformation and rupture of the particle aggregates in the fluid was the main contribution to the response. In addition, the steady state flow curves of these fluids were obtained over the shear rate range 0.1 to 100 s–1.  相似文献   

10.
The motion of long bubbles through viscoelastic fluids in capillary tubes   总被引:2,自引:0,他引:2  
The penetration of long gas bubble through a viscoelastic fluid in a capillary tube has been studied in order to investigate the influence of viscoelastic material properties on the hydrodynamic coating thickness and local flow kinematics. Experiments are conducted for three tailored ideal elastic (Boger) fluids, designed to exhibit similar steady shear properties but substantially different elastic material functions. This allows for the isolation of elastic and extensional material effects on the bubble penetration process. The shear and extensional rheology of the fluid is characterized using rotational and filament stretching rheometers (FSR). The fluids are designed such that the steady-state extensional viscosity measured by the FSR at a Deborah number (De) greater than 1 differs over three orders of magnitude (Trouton ratio = 103–106). The experiment set up to measure the hydrodynamic coating thickness is designed to provide accurate data over a wide range of capillary numbers (0.01 < Ca < 100). The results indicate that the coating thickness in this process increases with an increase in the extensionally thickening nature of the fluid. Experiments are also conducted using several different capillary tube diameters (0.1 < D < 1 cm), in order to compare responses at similar Ca but different flow De. Suitable scaling methods and nonlinear viscoelastic constitutive equations are explored to characterize the displacement process for polymeric fluids. Bubble tip shapes at different De are recorded using a CCD camera, and measured using an edge detection algorithm. The influence of the mixed flow field on the bubble tip shape is examined. Particle tracking velocimetry experiments are conducted to compare the influence of viscoelastic properties on the velocity field in the vicinity of the bubble tip. Local shear and extension rates are calculated in the vicinity of the bubble tip from the velocity data. The results provide quantitative information on the influence of elastic and extensional properties on the bubble penetration process in gas-assisted injection molding. The bubble shape and velocity field information provides a basis for evaluating the performance of constitutive equations in mixed flow. Received: 19 January 1999 Accepted: 30 June 1999  相似文献   

11.
The rheological properties of a starch suspension are usually studied through two viscosity measurements-pasting behavior and flow behavior of the resulting starch pastes-performed separately with two different tools and demanding rather high starch concentrations (6–10 wt %). This study focused on the feasibility of using a rheometer fitted with a starch stirrer cell to characterize, in a single experiment, the starch suspension’s behavior during and after pasting, all the while involving only low concentrations (2–4 wt %), more representative of a real-food context. A calibration of the starch stirrer cell in comparison to the coaxial cylinders one was done using model fluids (Newtonian and shear-thinning). A link between torque, rotational speed, and rheological properties was determined through two recalculated conversion factors (shear rate and shear stress). An operating diagram was then set indicating the laminar flow and good sensitivity domain for this cell. The accuracy of those constants to starch suspensions in the concentration range 2–4 wt % was demonstrated. The pasting behaviors of 2 wt % starch suspensions were followed successfully at two selected shear rates (13.5 and 135 s?1). The impact of the level of turbulence on the profiles obtained was stressed, a result that is not limited to low-concentration starch suspensions. Finally, the method developed was used to compare the pasting behaviors of 2 wt % native and modified waxy maize starch suspensions.  相似文献   

12.
13.
A numerical solution is presented for the friction factorReynolds number relation for a fluid which is Newtonian at low shear rates, power law at high shear rates with a transition region at intermediate shear rates. The solution makes possible the conservation of similitude when designing duct systems for such fluids since both Reynolds numbers and shear rates are considered.  相似文献   

14.
Dimensional analysis has been applied to an unsteady pulsatile flow of a shear-thinning power-law non-Newtonian liquid. An experiment was then designed in which both Newtonian and non-Newtonian liquids were used to model blood flow through a large-scale (38.5 mm dia.), simplified, rigid arterial junction (a distal anastomosis of a femorodistal bypass). The flow field within the junction was obtained by Particle Imaging Velocimetry and near-wall velocities were used to calculate the wall shear stresses. Dimensionless wall shear stresses were obtained at different points in the cardiac cycle for two different but dynamically similar non-Newtonian fluids; the good agreement between the measured dimensionless wall shear stresses confirm the validity of the dimensional analysis. However, blood exhibits a constant viscosity at high-shear rates and to obtain complete dynamic similarity between large-scale experiments and life-scale flows, the high-shear viscosity also needs to be included in the analysis. How this might be done is discussed in the paper.  相似文献   

15.
The effects of shear, uniaxial extension and temperature on the flow-induced crystallization of two different types of high-density polyethylene (a metallocene and a ZN-HDPE) are examined using rheometry. Shear and uniaxial extension experiments were performed at temperatures below and well above the peak melting point of the polyethylenes in order to characterize their flow-induced crystallization behavior at rates relevant to processing (elongational rates up to 30 s − 1 and shear rates 1 to 1,000 s − 1 depending on the application). Generally, strain and strain rate found to enhance crystallization in both shear and elongation. In particular, extensional flow was found to be a much stronger stimulus for polymer crystallization compared to shear. At temperatures well above the melting peak point (up to 25°C), polymer crystallized under elongational flow, while there was no sign of crystallization under simple shear. A modified Kolmogorov crystallization model (Kolmogorov, Bull Akad Sci USSR, Class Sci, Math Nat 1:355–359, 1937) proposed by Tanner and Qi (Chem Eng Sci 64:4576–4579, 2009) was used to describe the crystallization kinetics under both shear and elongational flow at different temperatures.  相似文献   

16.
 The effect of mixing particles of different sizes on the electrorheological response of suspensions under steady shear flow was investigated. Two sizes, 15 μm and 50 μm, of monodisperse spherical sulfonated poly(styrene-co-divinylbenzene) particles were used. Several electrorheological fluids were made containing different proportions of small and large particles dispersed in silicone oil, but with constant overall particulate concentration. It was found that the mixed size system produced the highest electrorheological response under the shear rates used (10 s−1 to 500 s−1), which is the opposite trend to previous studies of bimodal systems with larger size ratios. Received: 21 December 2000 Accepted: 29 March 2001  相似文献   

17.
利用HAAKE RS600流变仪对电流变体进行了强制振荡实验研究,得到了流体在不同 剪切应力幅和振荡频率下,电流变体储能模量、损耗模量、损耗因子随剪切应力和 剪切频率的变化规律.  相似文献   

18.
A new apparent viscosity function for shear thickening fluids is proposed, contemplating the three characteristic regions typically exhibited by these materials: slight shear thinning at low shear rates, followed by a sharp viscosity increase over a threshold shear rate value (critical shear rate), and a subsequent pronounced shear thinning region at high shear rates. The proposed function has a continuous derivative, making it appropriate in numerical simulations. Moreover, the function is shown to provide an excellent fit to several independent experimental data sets.  相似文献   

19.
To facilitate the flow of heavy viscous oils in a pipe, a water-lubricated transport is generally used. The water migrates into the regions of high shear at the pipe wall where it lubricates the flow. The pumping pressures are balanced by wall shear stresses in the water, the process therefore requires pressures comparable to pumping water alone, with no dependence on the viscosity of the oil. This means that significant savings in pumping power can be derived from this process, provided that it is well monitored. Indeed, the flow of a water/oil mixture in a pipe has two main characteristics. First, the fluids can adopt different spatial arrangements called flow regimes, and second, the presence of a water layer at the channel wall significantly reduces the global pressure drop. In this paper, an experimental investigation was performed on the effect of pipe slope and fluids flow rates on flow regimes, pressure drop and interfacial instability.  相似文献   

20.
We modify the split Hopkinson pressure bar and propose a compression–shear experimental method to investigate the dynamic behavior of polymer-bonded explosives (PBXs). The main apparatuses used include an incident bar with a wedge-shaped end and two transmission bars. We employ Y-cut quartzes with a rotation angle of 17.7° to measure the shear force and an optical system for shear strain measurement. A PBX with a density of 1.7 g/cm3 is investigated using the proposed method. Experimental results show that the specimen endures both compression and shear failure. Compression failure stress rises, and shear failure stress decreases as the strain rate increases. The sequences of shear and compression failure times are various at different strain rates. Based on the maximum shear failure criterion, we conclude that these phenomena are related to the experimental loading path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号