首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, characterization, and structure—property relations of aromatic polyesters with dicyanovinyl substituents is presented. Two comparable series of polyesters based on 3,4-dihydroxybenzylidenemalononitrile and 3,4-dihydroxy-5-methoxybenzylidenemalononitrile were prepared. As aromatic diacid components, terephthalic acid, phenylterephthalic acid, isophthalic acid, and 2-phenylisophthalic acid were used. The polyesters were prepared by solution polycondensation. GPC investigations revealed the existence of substantial amounts of defined cyclic products. These cycles could be isolated by preparative GPC. The polyesters are soluble in common low boiling organic solvents, particularly the phenyl-substituted ones. The polyesters are amorphous and have glass transition temperatures between 140 and 170°C. The absorption maxima are in the 306–322 nm range. The cut-off wavelength is between 400 and 428 nm. The polyesters with methoxy substitutent have generally the absorptions at longer wavelength. The refractive index of thin films of these polyesters were between 1.61 and 1.63 at 632.8 nm. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
New aromatic diamines containing phenyl-pendant thiazole units were synthesized in three steps starting from p-nitrobenzyl phenyl ketone. Novel aromatic polyamides containing phenyl-pendant thiazole units were prepared by the low-temperature solution polyconden-sation of 1,4- (or 1.3-) bis[5-(p-aminophenyl)-4-phenyl-2-thiazolyl] benzene with various aromatic dicarboxylic acid chlorides in N,N-dimethylacetamide. High molecular weight polyamides having inherent viscosities of 0.5–3.0 dL/g were obtained quantitatively. The polythiazole-amides with m-phenylene, 4,4′-oxydiphenylene, and 4,4′-sulfonyldiphenylene units were soluble in N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and pyridine, and gave transparent flexible films by casting from the solutions. These organic solvent-soluble polyamides displayed prominent glass transition temperatures (Tg) between 257 and 325°C. On the other hand, the polythiazole-amides with p-phenylene and 4,4′-biphenylene units were insoluble in most organic solvents, and had no observed Tg. All the polythiazole-amides started to decompose at about 400°C with 10% weight loss being recorded at 450–525°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Rigid aromatic polyesters containing alkoxy or phenyl-substituted oligophenyls were prepared. Soluble polymers were obtained also in cases where phenyl-substituted quinquephenyl diols were combined with asymmetric phenyl-substituted terephthalic acid. The synthesized polyesters were characterized by viscosimetry, gel permeation chromatography, thermal analysis, and dynamic mechanical analysis. The temperature dependence of the intrinsic viscosity was sensitive to the type of side groups. Thermogravimetry has shown that polyesters with aromatic substituents were stable up to 380–400°C. The glass transition temperatures of the polyesters with aromatic side groups were in the 220–260°C range as determined by DSC. Polyesters with hexyloxy side chains show crystallinity. Dynamic mechanical analysis showed that in the cases where aromatic substituents were used to increase solubility, the obtained polymers have very useful mechanical properties at high temperatures. The polymer having the quinquephenyl unit in the main chain has an almost constant modulus up to 340°C. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
A series of new soluble aromatic polyimides with inherent viscosities of 0.65–1.12 dL/g were synthesized from 1,3-bis(4-aminophenyl)-4,5-diphenylimidazolin-2-one and various aromatic tetracarboxylic dianhydrides by the conventional two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polyimides could also be prepared by the one-pot procedure in homogeneous m-cresol solution. Most of the tetraphenyl-pendant polyimides were soluble in organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and m-cresol. Some polyimides gave transparent, flexible, and tough films with good tensile properties. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyimides were in the range of 287–326 and 520–580°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1767–1772, 1998  相似文献   

5.
An efficient synthetic method has been developed for the synthesis of 2-arylacrylic esters from the corresponding aryl methyl ketones via Wittig reaction and singlet oxygen ene reaction. Wittig reaction to aryl methyl ketones with (methoxymethyl)triphenylphosphonium chloride in basic condition afforded the methyl enol ethers, and then 2-arylacrylic esters were obtained by singlet oxygen ene reaction, followed by tosylation and elimination in one-pot to the methyl enol ethers in good yields.  相似文献   

6.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Three types of linear thiol‐functionalized siloxane oligomers and three types of ene‐functionalized oligomers were synthesized and subsequently photopolymerized. Within each type of thiol‐functionalized oligomer, the ratio of mercaptan repeat units to nonreactive phenyl repeat units was varied to manipulate both the crosslink density and the degree of secondary interactions through π–π stacking. Similarly, the repeat units of the three ene‐functionalized oligomers are composed of allyl‐functional monomers, benzene‐functional monomers, and octyl‐functional monomers in varying ratios of benzene:octyl but with a constant fraction of allyl moieties. The structural composition of the siloxane oligomers plays a pivotal role in the observed material properties of networks formed through thiol–ene photopolymerization. Networks with a high concentration of thiol functionalities exhibit higher rubbery moduli, ultimate strengths, and Young's moduli than networks with lower thiol concentrations. Moreover, the concentration of functionalities capable of participating in secondary interactions via hydrogen bonding or π–π stacking directly impacts the network glass transition temperature and elasticity. The combination of low crosslink density and high secondary interactions produces networks with the greatest toughness. Finally, the fraction of octyl repeats correlates with the hydrophobic nature of the network. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
New polyarylates having benzopinacolone units were synthesized from 2,2-bis(4-hydroxyphenyl)-1,2-diphenylethanone and aromatic dicarboxylic acid chlorides. The polymers having an inherent viscosity of 0.71–0.94 dL/g were obtained by the two-phase method using toluene as an organic solvent. The polymers were easily soluble in various organic solvents and had high glass transition temperatures in the range of 200–240°C. An aromatic polyether having benzopinacolone unit was also prepared. However, its inherent viscosity was low because of the occurrence of a side reaction. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2229–2235, 1998  相似文献   

9.
10.
We report herein a detailed investigation into the reaction mechanism for a sequential oxy-Cope/ene reaction under anionic conditions. With DFT calculations and ab initio molecular dynamics simulations, the observed diastereoselectivity is shown to be the result of an isomerization of the enolate olefin, which would evidently not occur under neutral conditions. The potential energy surface was thoroughly mapped out for the reaction pathways and the proposed mechanism confirmed the different product distributions observed under neutral and anionic oxy-Cope conditions. In addition, other possible pathways are shown to be higher in energy and experimental evidence is given that supports the olefin-isomerization pathway.  相似文献   

11.
The first enantioselective synthesis of (1S,3R,6R)-1-hydroxy-7(14),10-bisaboladien-4-one, a potent antifeedant isolated from the Japanese cedar, Cryptomeria japonica, was achieved starting from methyl (R)-4-hydroxy-3-methylbutanoate via a stereoselective carbonyl ene cyclization reaction as the key step. Comparison of the spectral data and specific rotation of the synthetic material with those of the natural product led to unambiguous stereochemical assignment of the antifeedant as 1S, 3R, and 6R.  相似文献   

12.
A novel organic monolith was successfully fabricated by a one‐pot thiol‐ene click reaction of triallyl isocyanurate with pentaerythritol tetrakis‐(2‐mercaptoacetate) and mercaptopropionic acid in the presence of porogens. We investigated the effects of the ratio of monomer and cross‐linking agent, the type and ratio of porogen, and click reaction temperature on the permeability and morphology of the prepared poly triallyl isocyanurate‐co‐pentaerythritol tetrakis (2‐mercaptoacetate) monoliths. The monolith was also characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that the monoliths had continuous porous framework, good permeability, and high mechanical stability. A series of analytes with different properties such as alkylbenzenes, polycyclic aromatic hydrocarbons, anilines, and phenols were used to evaluate the electrochromatographic performance of the prepared monoliths in pressurized capillary electrochromatography. The prepared polymer monolith showed typical reversed‐phase electrochromatographic behavior for hydrophobic substances. Moreover, the prepared monolith showed a mix of reversed‐phase and cation exchange interaction modes for basic aniline compounds. The minimum plate height of the monolith was 8.76 μm (132 100 plates/m) for propylbenzene. These results demonstrated that one‐pot thiol‐ene click chemistry can provide a simple and reliable method for the preparation of organic monoliths.  相似文献   

13.
通过假高稀反应和芳香亲核取代反应成功制备了一种新型芳基三硫醇,其与烯丙基聚醚砜(c-PAES)的混合体系在光引发剂 TPO 的作用下能极大地增强聚醚砜体系的紫外交联速度.研究结果表明,按官能团摩尔比1:1的比例添加芳基三硫醇的聚醚砜体系在紫外交联情况下,其最终双键转化率提高了1倍左右,而且体系的光反应速率有了极大的提高...  相似文献   

14.
1,4-Dicarbonyl-1,4-dihydronaphthalene ( 1 ) was synthesized by the dehydrochlorination reaction of 1,4-dihydronaphthalene-1,4-dicarbonyl chloride with triethylamine and obtained as its very dilute solution, but it easily polymerized in the concentration as high as 0.1 mol/L to give its polymer. 1 generated in situ by the dehydrochlorination reaction of 1,4-dihydronaphthalene-1,4-dicarbonyl chloride in a deoxygenated toluene polymerized alternatingly with benzoquinones such as 2-dodecylthio-p-benzoquinone, 2,5-di(tert-butyl)-p-benzoquinone, p-benzoquinone, and 2,3-dichloro-5,6-dicyano-p-benzoquinone, and with benzoquinone diimines such as N,N′-diethoxycarbonyl-p-benzoquinone diimine, N,N′-dibenzoyl-p-benzoquinone diimine, and N,N′-diphenyl-p-benzoquinone diimine to give aromatic polyesters and polyamides, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1929–1936, 1998  相似文献   

15.
A facile, efficient approach for preparation of functionalized aromatic polysulfones by postpolymerization modification with thiol‐ene click chemistry is described. The key synthetic strategy is to incorporate a pendant vinyl ether group into polysulfones as a reactive precursor with controlled degrees of functionalization. Synthetic utility of the pendant alkenyl group is demonstrated by generating diverse polymer derivatives using thiol‐ene functionalization including glycosylated polysulfone. The highly reactive alkene platform in the polymer affords convenient, metal‐free, and azide‐free click transformations to create diverse ranges of new functionalized polysulfones that could be applied in various applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3237–3243  相似文献   

16.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

17.
A new synthetic method for 2-arylindoles has been developed, the process through Suzuki coupling reaction of 3-bromoindoles with hindered boronic acid catalyzed by Pd(OAc)2/PCy3, and a series of 2-arylindoles have been synthesized in moderate to high yields.  相似文献   

18.
This study aims to determine whether a balance between concerted and non-concerted pathways exists, and in particular to ascertain the possible role of diradical/zwitterion or peroxirane intermediates. Three non-concerted pathways, via 1) diradical or 2) peroxirane intermediates, and 3) by means of hydrogen-abstraction/radical recoupling, plus one concerted pathway (4), are explored. The intermediates and transition structures (TS) are optimized at the DFT(MPW1K), DFT(B3LYP) and CASSCF levels of theory. The latter optimizations are followed by multireference perturbative CASPT2 energy calculations. (1) The polar diradical forms from the separate reactants by surmounting a barrier (deltaE(++)(MPW1K)=12, deltaE++(B3LYP)=14, and deltaE(++)(CASPT2)=16 kcal mol(-1) and can back-dissociate through the same TS, with barriers of 11 (MPW1K) and 8 kcal mol(-1) (B3LYP and CASPT2). The diradical to hydroperoxide transformation is easy at all levels (deltaE(++)(MPW1K)<4, deltaE(++)(B3LYP)=1 and deltaE(++)(CASPT2)=1 kcal mol(-1)). (2) Peroxirane is attainable only by passing through the diradical intermediate, and not directly, due to the nature of the critical points involved. It is located higher in energy than the diradical by 12 kcal mol(-1), at all theory levels. The energy barrier for the diradical to cis-peroxirane transformation (deltaE(++)=14-16 kcal mol(-1)) is much higher than that for the diradical transformation to the hydroperoxide. In addition, peroxirane can very easily back-transform to the diradical (deltaE(++)<3 kcal mol(-1)). Not only the energetics, but also the qualitative features of the energy hypersurface, prevent a pathway connecting the peroxirane to the hydroperoxide at all levels of theory. (3) The last two-step pathway (hydrogen-abstraction by (1)O(2), followed by HOO-allyl radical coupling) is not competitive with the diradical mechanism. (4) A concerted pathway is carefully investigated, and deemed an artifact of restricted DFT calculations. Finally, the possible ene/[pi2+pi2] competition is discussed.  相似文献   

19.
A new 3-trifluoromethyl-substituted triphenylamine-containing aromatic diacid monomer, N,N-bis(4-carboxyphenyl)-3-trifluoromethylaniline, was prepared by the substitution reaction of 3-trifluoromethylaniline with 4-fluorobenzonitrile, followed by alkaline hydrolysis of the dinitrile intermediate. Novel aromatic polyamides with 3-trifluoromethyl-substituted triphenylamine moieties were prepared from the diacid and various aromatic diamines via the direct phosphorylation polycondensation. All the polyamides were amorphous and readily soluble in many polar organic solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone, and could be solution-cast into transparent, tough, and flexible films with good mechanical properties. They exhibited good thermal stability with relatively high glass-transition temperatures (258–327°C), 10% weight-loss temperatures above 500°C, and char yields higher than 60% at 800°C in nitrogen. These polymers had low dielectric constants of 3.22–3.70 (100 Hz), low moisture absorption in the range of 1.75–2.58%, and high transparency with an ultraviolet–visible absorption cut-off wavelength in the 375–395 nm range. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited a reversible oxidation redox couple with oxidation half-wave potentials (E1/2) of 0.95–1.00 V vs. Ag/AgCl in an acetonitrile solution.  相似文献   

20.
Silylated aromatic polyureas were synthesized by the polyaddition of N,N′-bis(trimethylsilyl)-substituted aromatic diamines to aromatic diisocyanates in various organic solvents at a temperature ranging from 30 to 100°C. Colorless and transparent films of the silylated polyureas were obtained by casting directly from these solutions in a dry nitrogen atmosphere. The silylated polyureas thermally decomposed at around 200°C and were easily desilylated with alcohol to convert to almost amorphous aromatic polyureas having inherent viscosities of 0.4–1.0 dL/g. The polyureas exhibited better solubility in organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide and had somewhat lower thermal decomposition temperatures (around 300°C) than the polyureas prepared by a conventional method from the parent aromatic diamines and diisocyanates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号