首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Although two‐dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high‐yield preparation of solution‐processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, Tix Ta1−x Sy Oz (x =0.71, 0.49, and 0.30), from Tix Ta1−x S2 precursors. The nanosheet exhibits strong absorbance in the near‐infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid‐conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

2.
Although two-dimensional (2D) metal oxide/sulfide hybrid nanostructures have been synthesized, the facile preparation of ultrathin 2D nanosheets in high yield still remains a challenge. Herein, we report the first high-yield preparation of solution-processed ultrathin 2D metal oxide/sulfide hybrid nanosheets, that is, TixTa1−xSyOz (x=0.71, 0.49, and 0.30), from TixTa1−xS2 precursors. The nanosheet exhibits strong absorbance in the near-infrared region, giving a large extinction coefficient of 54.1 L g−1 cm−1 at 808 nm, and a high photothermal conversion efficiency of 39.2 %. After modification with lipoic acid-conjugated polyethylene glycol, the nanosheet is a suitable photothermal agent for treatment of cancer cells under 808 nm laser irradiation. This work provides a facile and general method for the preparation of 2D metal oxide/sulfide hybrid nanosheets.  相似文献   

3.
Metal–organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass‐transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet‐based membranes remain as great challenges. A modified soft‐physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub‐10 nm‐thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H2/CO2 separation performance, with a separation factor of up to 166 and H2 permeance of up to 8×10−7 mol m−2 s−1 Pa−1 at elevated testing temperatures owing to a well‐defined size‐exclusion effect. This nanosheet‐based membrane holds great promise as the next generation of ultrapermeable gas separation membrane.  相似文献   

4.
Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel‐structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm?2 at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non‐precious‐metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.  相似文献   

5.
The utilization of oxygen vacancies (OVs) in sodium ion batteries (SIBs) is expected to enhance performance, but as yet it has rarely been reported. Taking the MoO3?x nanosheet anode as an example, for the first time we demonstrate the benefits of OVs on SIB performance. Moreover, the benefits at deep‐discharge conditions can be further promoted by an ultrathin Al2O3 coating. A series of measurements show that the OVs increase the electric conductivity and Na‐ion diffusion coefficient, and the promotion from ultrathin coating lies in the effective reduction of cycling‐induced solid‐electrolyte interphase. The coated nanosheets exhibited high reversible capacity and great rate capability with the capacities of 283.9 (50 mA g?1) and 179.3 mAh g?1 (1 A g?1) after 100 cycles. This work may not only arouse future attention on OVs for sodium energy storage, but also open up new possibilities for designing strategies to utilize defects in other energy storage systems.  相似文献   

6.
Anionic Keggin polyoxometalates (POMs) and ether linkage‐enriched ammonium ions spontaneously self‐assemble into rectangular ultrathin nanosheets in aqueous media. The structural flexibility of the cation is essential to form oriented nanosheets; as demonstrated by single‐crystal X‐ray diffraction measurements. The difference in initial conditions exerts significant influence on selecting for self‐assembly pathways in the energy landscape. Photoillumination of the POM sheets in pure water causes dissolution of reduced POMs, which allowed site‐specific etching of nanosheets using laser scanning microscopy. By contrast, photoetching was suppressed in aqueous AgNO3 and site‐selective deposition of silver nanoparticles occurred as a consequence of electron transfer from the photoreduced POMs to Ag+ ions on the nanosheet surface.  相似文献   

7.
Calcium silicate monolith was prepared by the hydrothermal reaction of a slurry of SiO2, calcium hydroxide, and surfactant (OP‐10) obtained by high‐energy ball milling, followed by drying at ambient pressure. By using this strategy, the shrinkage due to the collapse of pores during the drying of porous materials, which is a commonly observed phenomena, was successfully avoided. It has a unique microstructure of hierarchical macro‐/mesoporous ultrathin calcium silicate nanosheets with a layered gyrolite crystalline structure. Very interestingly, the calcium silicate nanosheets can be peeled off to give a single‐layer nanosheet (1.23 nm) of gyrolite by ultrasonication. The monolith has a low apparent density (0.073 g cm?3) and low thermal conductivity (0.0399 W K?1 m?1). The reasons behind why the formation of the unique hierarchical macro‐/mesoporous ultrathin nanosheets avoids shrinkage during the hydrothermal reaction and drying, and considerably decreases the thermal conductivity, is discussed.  相似文献   

8.
The insufficient visible light responsive region and fast charge recombination probability are still the key obstacles for designing high-performance photocatalytic system. Herein, a “One Stone, Two Birds” strategy was reported in three-dimensional (3D) hierarchical graphitic carbon nitride (g-C3N4) nanosheet with intramolecular donor-acceptor (D-A) motifs (3D CN) photocatalyst, which solved two urgent problems simultaneously. The 3D hierarchical nanosheets structure endowed 3D CN with abundantly exposed reaction active sites and cross-plane diffusion channels. The formation of internal D-A system facilitated the light absorption and accelerated the transfer and separation of charge carriers. Furthermore, the introducing of D-A motifs optimized the bandgap of g-C3N4 and negative-shifted conduction band position. The as-prepared 3D CN showed excellent visible-light photocatalytic H2 performance, with H2 evolution rate of 2521.2 μmol h?1/g, which was six times higher than the pristine CN. This outstanding performance was ascribed to the synergistic effect of 3D hierarchical nanosheets structure and intramolecular D-A motifs. This current work provides a novel insight to design and construct of 3D hierarchical CN nanostructures with D-A motifs simultaneously, which can be further promising applications for clean and sustainable energy conversion.  相似文献   

9.
The performance of nano‐sensor based on MoS2 nanosheet mixed with Au particle is tested based electrochemical test involving cyclic voltammogram and impedance spectroscopy, where the FeIII(CN)63?/FeII(CN)64? and dopamine (DA) are chosen as research object to verify the role of layer number of MoS2 nanosheet and the temperature. The electrochemical test shows the Au nanoparticle would improve the electron exchange reaction occurring on the electrode. In the solution of FeIII(CN)63?/FeII(CN)64?, the electrode reaction follows , where increasing the layer number of MoS2 nanosheet would restrict the reaction. In the DA system, the reaction of occurs on the electrode and increasing the layer number of MoS2 nanosheet would facilitate the reaction. The difference as mentioned above is assigned to the energy level shift originated from variance of layer number of MoS2 nanosheet and the changing of reaction mechanism. In addition, temperature would mainly facilitate the kinetics of electron exchange reaction, which is assigned to the diffusion acceleration of DA molecule. Simultaneously, the desorption process of reactant in the electrolyte would enhance. The role of layer number of MoS2 nanosheet and the temperature is clarified with the thermodynamic and kinetic properties of electron exchange reaction based on MoS2 nanosheet, which would improve the understanding of nano‐sensor based on MoS2 nanosheet.  相似文献   

10.
单线态氧(1O2)可将硫醚化合物选择性氧化为亚砜,而开发具有高1O2量子产率的高效光敏剂至关重要.本文中我们报道了超薄二维共价有机骨架(COFs)纳米片(NSs)COF-367 NSs的制备和表征.COF-367 NSs在各种有机溶剂中的良好分散性和高效率的光收集赋予其在可见光照射下产生1O2的显著性能,且远优于块体C...  相似文献   

11.
Bi2O3 nanosheets were grown on a conductive multiple channel carbon matrix (MCCM) for CO2RR. The obtained electrocatalyst shows a desirable partial current density of ca. 17.7 mA cm?2 at a moderate overpotential, and it is highly selective towards HCOOH formation with Faradaic efficiency approaching 90 % in a wide potential window and its maximum value of 93.8 % at ?1.256 V. It also exhibits a maximum energy efficiency of 55.3 % at an overpotential of 0.846 V and long‐term stability of 12 h with negligible degradation. The superior performance is attributed to the synergistic contribution of the interwoven MCCM and the hierarchical Bi2O3 nanosheets, where the MCCM provides an accelerated electron transfer, increased CO2 adsorption, and a high ratio of pyrrolic‐N and pyridinic‐N, while ultrathin Bi2O3 nanosheets offer abundant active sites, lowered contact resistance and work function as well as a shortened diffusion pathway for electrolyte.  相似文献   

12.
Increasing energy demands and worsening environmental issues have stimulated intense research on alternative energy storage and conversion systems including supercapacitors and fuel cells. Here, a rationally designed hierarchical structure of ZnCo2O4@NiCo2O4 core–sheath nanowires synthesized through facile electrospinning combined with a simple co‐precipitation method is proposed. The obtained core–sheath nanostructures consisting of mesoporous ZnCo2O4 nanowires as the core and uniformly distributed ultrathin NiCo2O4 nanosheets as the sheath, exhibit excellent electrochemical activity as bifunctional materials for supercapacitor electrodes and oxygen reduction reaction (ORR) catalysts. Compared with the single component of either ZnCo2O4 nanowires or NiCo2O4 nanosheets, the hierarchical ZnCo2O4@NiCo2O4 core–sheath nanowires demonstrate higher specific capacitance of 1476 F g?1 (1 A g?1) and better rate capability of 942 F g?1 (20 A g?1), while maintaining 98.9 % capacity after 2000 cycles at 10 A g?1. Meanwhile, the ZnCo2O4@NiCo2O4 core–sheath nanowires reveal comparable catalytic activity but superior stability and methanol tolerance over Pt/C as ORR catalyst. The impressive performance may originate from the unique hierarchical core–sheath structures that greatly facilitate enhanced reactivity, and faster ion and electron transfer.  相似文献   

13.
In the present study, we report the synthesis of a high‐quality, single‐crystal hexagonal β‐Co(OH)2 nanosheet, exhibiting a thickness down to ten atomic layers and an aspect ratio exceeding 900, by using graphene oxide (GO) as an exfoliant of β‐Co(OH)2 nanoflowers. Unlike conventional approaches using ionic precursors in which morphological control is realized by structure‐directing molecules, the β‐Co(OH)2 flower‐like superstructures were first grown by a nanoparticle‐mediated crystallization process, which results in large 3D superstructure consisting of ultrathin nanosheets interspaced by polydimethoxyaniline (PDMA). Thereafter, β‐Co(OH)2 nanoflowers were chemically exfoliated by surface‐active GO under hydrothermal conditions into unilamellar single‐crystal nanosheets. In this reaction, GO acts as a two‐dimensional (2D) amphiphile to facilitate the exfoliation process through tailored interactions between organic and inorganic molecules. Meanwhile, the on‐site conjugation of GO and Co(OH)2 promotes the thermodynamic stability of freestanding ultrathin nanosheets and restrains further growth through Oswald ripening. The unique 2D structure combined with functionalities of the hybrid ultrathin Co(OH)2 nanosheets on rGO resulted in a remarkably enhanced lithium‐ion storage performance as anode materials, maintaining a reversible capacity of 860 mA h g?1 for as many as 30 cycles. Since mesocrystals are ubiquitous and rich in morphological diversity, the strategy of the GO‐assisted exfoliation of mesocrystals developed here provides an opportunity for the synthesis of new functional nanostructures that could bear importance in clean renewable energy, catalysis, photoelectronics, and photonics.  相似文献   

14.
Two‐dimensional (2D) nanomaterials are one of the most promising types of candidates for energy‐storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt‐/nickel‐based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g?1 at 7.0 A g?1 and 150 mA h g?1 at 10.0 A g?1) and promising cycling performance (404 mA h g?1 after 100 cycles at 0.1 A g?1). Meanwhile, very impressive lithium storage performance is also achieved, which is maintained at 1029 mA h g?1 after 100 cycles at 0.2 A g?1. NiO and NiCo2O4 nanosheets are also successfully prepared through the same synthetic approach, and both deliver very encouraging lithium storage performances. In addition to rechargeable batteries, 2D cobalt‐/nickel‐based hydroxides and oxides are also anticipated to have great potential applications in supercapacitors, electrocatalysis and other energy‐storage‐/‐conversion‐related fields.  相似文献   

15.
A novel Pt–TiO2/Ag nanotube photocatalyst has been synthesized successfully via a facile method. TiO2 nanotubes are assembled with numerous ultrathin TiO2 nanosheets and show a highly open structure. The gaps between adjacent TiO2 nanosheets can serve as channels for the access of reactants, accelerating the mass transfer process. During the fabrication process of the Pt–TiO2/Ag nanotube photocatalyst, high‐quality Pt–SiO2 nanotubes are synthesized first with the structure‐directing effect of polyvinylpyrrolidone. Then a TiO2 layer is coated on the outside surface of the silica nanotubes. The introduced titanium species can be converted into TiO2 nanosheet structure during the subsequent hydrothermal treatment, gradually constructing nanosheet‐assembled nanotubes. Lastly, after the introduction of another electron sink function site of Ag through UV irradiation, the Pt–TiO2/Ag nanotube photocatalyst with dual electron sink functional sites is obtained. The specially doped Pt and Ag NPs can simultaneously inhibit the recombination process of photogenerated charge carriers and increase light utilization efficiency. Therefore, the as‐synthesized Pt–TiO2/Ag nanotube catalyst exhibits a high photocatalytic degradation performance for rhodamine B of 0.2 min?1, which is about 3.2 and 5.3 times as high as that of Pt–TiO2 and TiO2 nanotubes because of the enhanced charge carrier separation efficiency. Furthermore, in the unique nanoarchitecture, the nanotubes are assembled with numerous ultrathin TiO2 nanosheets, which can absorb abundant active species and dye molecules for photocatalytic reaction. On the basis of experimental results, a possible rhodamine B degradation mechanism is proposed to explain the excellent photocatalytic efficiency of the Pt–TiO2/Ag nanotube photocatalyst.  相似文献   

16.
Two-dimensional (2D) metal-organic frameworks (MOF) nanosheets have emerged as novel membrane materials for gas separation. However, the development of ultrathin MOF membranes with tunable separation performances is still a challenge. Herein, we developed a facile GO-assisted restacking method to fabricate defect-free membranes with monolayer Zr-BTB nanosheets. Obtained ultrathin membranes ranging from 130 nm to 320 nm show tunable separation performances and exceed the 2008 Robeson upper bound by changing the amount of nanolayers in vertical stacking direction. Furthermore, a heating filtration method was used to change the restacking process of nanosheets in the horizontal direction. As a result, H2/CO2 selectivity can be enhanced by two times with the same membrane thickness (130 nm) and H2 permeance is almost maintained to be 7.0×10−7 mol m−2 s−1 pa−1. This method may provide a possible way to efficiently tune the gas separation performances of MOF membranes.  相似文献   

17.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO_2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO_2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO_2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g~(-1)的电流密度下,比电容提高至1 297 F·g~(-1);2 A·g~(-1)下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO_2的结构稳定性。  相似文献   

18.
通过化学浴沉积和水热法在泡沫镍上制备了NiO/MnO2分级纳米片阵列复合材料,XRD和SEM测试表明NiO纳米片垂直生长在泡沫镍上,交叉形成网状阵列结构;MnO2纳米介孔泡沫进一步生长在NiO纳米片两侧,与NiO形成了壳核式的复合结构。循环伏安和恒流充放电测试发现,NiO/MnO2分级纳米片阵列复合材料的电化学性能相比复合前得到明显改善,在1 A·g-1的电流密度下,比电容提高至1 297 F·g-1;2 A·g-1下循环1 000次,比电容保持率高达97%,比电容和循环性能的改善是由于分级纳米片阵列复合结构方便了电解液传质,扩大了活性材料与电解液的接触,促进了赝电容反应,提高了NiO和MnO2的结构稳定性。  相似文献   

19.
The generation of singlet oxygen (1O2) during photodynamic therapy is limited by the precise cooperation of light, photosensitizer, and oxygen, and the therapeutic efficiency is restricted by the elevated glutathione (GSH) levels in cancer cells. Herein, we report that an ultrathin two‐dimensional metal–organic framework of Cu‐TCPP nanosheets (TCPP=tetrakis(4‐carboxyphenyl)porphyrin) can selectively generate 1O2 in a tumor microenvironment. This process is based on the peroxidation of the TCPP ligand by acidic H2O2 followed by reduction to peroxyl radicals under the action of the peroxidase‐like nanosheets and Cu2+, and their spontaneous recombination reaction by the Russell mechanism. In addition, the nanosheets can also deplete GSH. Consequently, the Cu‐TCPP nanosheets can selectively destroy tumor cells with high efficiency, constituting an attractive way to overcome current limitations of photodynamic therapy.  相似文献   

20.
There is a growing need for the electrode with high mass loading of active materials, where both high energy and high power densities are required, in current and near-future applications of supercapacitor. Here, an ultrathin Co3S4 nanosheet decorated electrode (denoted as Co3S4/NF) with mass loading of 6 mg cm?2 is successfully fabricated by using highly dispersive Co3O4 nanowires on Ni foam (NF) as template. The nanosheets contained lots of about 3~5 nm micropores benefiting for the electrochemical reaction and assembled into a three-dimensional, honeycomb-like network with 0.5~1 μm mesopore structure for promoting specific surface area of electrode. The improved electrochemical performance was achieved, including an excellent cycliability of 10,000 cycles at 10 A g?1 and large specific capacitances of 2415 and 1152 F g?1 at 1 and 20 A g?1, respectively. Impressively, the asymmetric supercapacitor assembled with the activated carbon (AC) and Co3S4/NF electrode exhibits a high energy density of 79 Wh kg?1 at a power density of 151 W kg?1, a high power density of 3000 W kg?1 at energy density of 30 Wh kg?1 and 73 % retention of the initial capacitance after 10,000 charge-discharge cycles at 2 A g?1. More importantly, the formation process of the ultrathin Co3S4 nanosheets upon reaction time is investigated, which is benefited from the gradual infiltration of sulfide ions and the template function of ultrafine Co3O4 nanowires in the anion-exchange reaction.
Graphical abstract The ultrathin 2D Co3S4 nanosheets fabricated on 3D Ni foam and the formation process of the ultrathin Co3S4 nanosheets upon reaction times has been investigated. At the same time, the Co3S4/NF electrode displays an outstanding specific capacitance of 2420 F g?1 at 1 A g?1 with high mass loading of 6 mg cm?2.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号